Losningsskisser till tentamen i TATA27 Partiella differentialekvationer 2013-05-27

1. Using the formula sheet, the correct ansatz with Neumann boundary conditions is u(z,t) =
o0

t)/2+z ak(t) cos(3kz). The PDE gives the ODEs af)(t) = 0, aj,(t) = —3(nk/2)ax(t),
k=1

k > 1, for the coefficients. Thus u(z,t) = ag/2 + Zak exp(—3(mk/2)%t) cos(Zkz). The

k=1
inital data give

2 k 16(_1)k
ay = / 22 cos(nkx/2)dx = (2/(k7r))3/ tcostdt = ... = — 32 kE>1,
0 0 T

by making the change of variables ¢t = kmwx/2 when k& > 1. We obtain the solution

o0
’7T

(k)% cos( kx),

A
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where we see that lim u=4/3.
t—00

2. (a) Using the change of variables £ = x — ct,n = = + ct, the chain rule shows that the
wave equation is equivalent to

02“66 + ‘32“7777 - 202“&7 = 02(“55 + upy + 2ugy),

that is ug, = 0. Integration gives the general solution u(&,n) = f(§) + g(n) as claimed.

(b) The boundary and initial conditions read

f(=ct) +g(ct) = b(t), t>0,
f(@) +9(x) = a(x), x>0,
—cf'(z) + cg'(x) = 0, x> 0.

The last equation shows that f(s) = g(s) + d for all s > 0, where d is some constant.
Thus the second gives g(s) = (a(s) —d)/2, f(s) = (a(s) +d)/2 for s > 0, and the first
gives f(—s) = b(s/c) — g(s) for s > 0. Thus gives the solution

(z,t) = b(t —z/c) + L(a(z + ct) — a(ct — x)), 0<z<ct,
s(a(z + ct) + a(z — ct)), 0<ct<um.

Note that we do not need to know g¢(s) for s < 0, or the value of the constant d.
3. (a) From the formula sheet, the fundamental solution for the plane is ﬁln(mQ +2).

Applying the method of reflection, we see that
Gp=2£((x—a)?+(y—0? - Lth(@x+a)?+(y—0b)?
+ g In((@ +a)® + (y +)°) = - In((z —a)® + (y +b)°)

is zero on D and differs from the fundamental solution, centered at (a, b), by terms which
are harmonic in D. Thus this is indeed the Green’s function.



(b) By Green’s formulas u(a,b) = / aG—Duals. On the positive z-axis, we have
op 9dn
0Gp 1 —4b 4b
—— = —-0,G b))|y=0 = —— .
on Yy D(($7y)? (a7 ))|y—0 AT ((l’ — G/)2 + b2 + (l' + a)2 + b2)

This gives the solution

u(a,b) = :/OOO ((ac - al)2 +02  (z+ a1)2 + b2> Mz)dz.

. In polar coordinates, we have fi = 1 — 7, fo = (r — r¥)cosg, Vfi = —F and Vfy =
(1 —2r)cos g — (1 —r)sinpp, and get

1
0

1
/f12:27r/ (r—2r2—|—r3)dr:7r/6, /f22:7r/ (T3—2T4—|—’r‘5)d’l“:7r/60,
D D 0
1 1
/|Vf1|2:27f/ rdr =, /|Vf2|2=7r/ (2r — 6r% + 5r%)dr = /4.
D 0 D 0

2m

On the other hand, it is clear that / fifodxdy = / V f1-V fadxdy = 0 since / cos pdp =
D D 0

0. Therefore the matrices in the Rayleigh—Ritz method are diagonal and we get the Ray-

leigh quotients 7/(7w/6) = 6 and (7/4)/(7w/60) = 15 as approximations to the first two

eigenvalues. (More exact A\; &~ 5.78 and Ay ~ 14.68.)

. (a) This is the Laplace equation, and by the maximum principle for this equation, u(z, yo) >
0 at some boundary point. £ = 9D is the smallest possible such set.

(b) This is the wave equation. Such a point need not exist, which the example u(x,y) =
2sin(z) sin(y) — 1 shows. (A full proof!)

(c) With ¢ = z, this is the backward heat equation. The maximum principle for the heat
equation, with time reversed, tells that if u < 1/2 on E := 9D N{(x,y) ; v > 1/2}, then
u(1/2,1/2) < 1/2. Therefore, if now u(1/2,1/2) =1, then maxu > 0.

. Differentiate twice:

1 2m
f(r) = o / (cos pul(z + rcos p,y + rsinp) + sin Quy (z + 7 cos @,y + rsin ©)) dp,
0
1 2m
f'r) = > / (cos® pul . (z + 7 cos p,y + rsing)
0

+ sin(2¢)uy, (x4 7 cos @,y + rsinp) + sin? Py, (T + 7 cos p,y + 7sing))dep.

Using the continuity of the second derivatives, we get

0 = lim f"(r) = !

2
ti 1) = 5 [ (cos? il ,0) +sin(2)i (1,0) + s i .

= %um(x,y) + %“yy(% Y),

which proves that u is a harmonic function.



