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1 Preliminaries

1.1 Notation

You will be familiar with notation for derivatives from previous courses, in particular from Calculus
and Multivariable Calculus, but let us refresh our memories.

Given a real-valued function g of one real variable (g : E → R where E ⊂ R), we denote the
derivative of g at a point in the function’s domain x as

g′(t) = ġ(t) =
dg

dt
(t) := lim

h→0

g(t+ h)− g(t)

h
.

For a function f of more than one real variable, say f : D → R where D ⊂ R3, we have three
possible partial derivatives and a menagerie of notation:

f ′x(x, y, z) = fx(x, y, z) = ∂1f(x, y, z) = ∂xf(x, y, z) =
∂f

∂x
(x, y, z) := lim

h→0

f(x+ h, y, z)− f(x, y, z)

h
;

f ′y(x, y, z) = fy(x, y, z) = ∂2f(x, y, z) = ∂yf(x, y, z) =
∂f

∂y
(x, y, z) := lim

h→0

f(x, y + h, z)− f(x, y, z)

h
;

f ′z(x, y, z) = fz(x, y, z) = ∂3f(x, y, z) = ∂zf(x, y, z) =
∂f

∂z
(x, y, z) := lim

h→0

f(x, y, z + h)− f(x, y, z)

h
.

Different authors have different preferences and each notation seems best suited to different situations,
so it’s good to be aware of them all.

Higher order derivates are denoted analogously, for example fxx, ∂x∂yf , ∂2f/∂y2, fxxy, etc.
The vector formed of all the partial derivates of f is called the gradient of f . This is written

∇f := (∂1f, ∂2f, ∂3f)

For a function F : D → R3, we can consider the divergence of F :

divF = ∇ · F := ∂1F1 + ∂2F2 + ∂3F3,

where F = (F1, F2, F3). We can also consider the curl of F :

curlF = ∇× F := (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1)
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1.2 Differential equations

A differential equation is an equation that involves an unknown function u and derivatives of u. If u
is a function of one variable, then the equation is called an ordinary differential equation (ODE). If u
is a function of more than one variable, then the equation is a partial differential equation (PDE). For
example, u′ = u is an ordinary diffential equation, but ux + 4uy = 0 is a partial differential equation.

A function u which satisfies a differential equation is called a solution to the equation. For example
u(x) = ex is a solution to the equation u′ = u.

The order of a differential equation is the order of the highest derivative that appears in the
equation. Thus all second-order partial differential equations in two variables takes the form

F (u, ux, uy, uxx, uxy, uyy) = 0.

For example, if F (x0, x1, x2, x11, x12, x22) = x11 + x22, then the differential equation is uxx + uyy = 0.
We will find the notion of differential operator convenient to use. An operator is a function which

maps functions to functions. A differential operator which takes derivatives of the function it acts
on. For example, for a fixed n ∈ N, ∇ is a differential operator which maps f : Rn → R to the
function ∇f : Rn → Rn given by the formula ∇f(x) = (∂1f(x), ∂2f(x), . . . , ∂nf(x)). It is often
useful to use the notation introduced above to denote differential operators, for example the operator
u 7→ ut − uxx = (∂t − ∂2

x)u can be denoted simply as (∂t − ∂2
x).

An operator L is called linear if L(αu+ βv) = αL(u) + βL(v) for all α, β ∈ R and all functions u
and v. It is easy to check the following operators are linear operators.

1. The gradient operator ∇ = (∂1, ∂2, . . . , ∂n) acting on functions u : Rn → R.

2. Divergence div =
∑n

j=1 ∂j acting on functions u : Rn → Rn.

3. curl acting on functions u = (u1, u2, u3) : R3 → R3 by the formula

curl(u) = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 − ∂2u1).

4. The Laplacian ∆ := ∇ · ∇ =
∑n

j=1 ∂
2
j acting on f : Rn → R.

An example of an operator which is not linear is u 7→ uy + uxxy + uux. (Why?)
The order of an operator is the order of the differential equation L(u) = 0 as an equation in u. A

differential equation is said to be a linear homogeneous equation, if it is of the form L(u) = 0, where
L is a linear differential operator. It is said to be a linear inhomogeneous equation if it is of the form
L(u) = f for some function f , where again L is a linear differential operator.

2 First-order linear equations and the method of characteristics

We shall begin by attempting to solve a fairly simple equation: Find all functions u : R3 → R such
that

aux + buy + cuz = 0 in R3, (2.1)

where a, b and c are three given constants not all zero. Although the equation itself is simple, to solve
it we will use a method which is quite powerful. Observe that the equation can be rewritten as

v · ∇u = 0

where v = (a, b, c). Thus the equation says that the directional derivate in the direction v/|v| is zero.
Thus any solution u will be constant along lines parallel to v.

Since we are assuming that at least one of a, b and c is non-zero, suppose for definitness that c 6= 0.
Then the vector v has a component pointing out of the xy-plane and each point (x, y, z) ∈ R3 lies on a
unique line parallel to v which passes through the xy-plane at a point (x′, y′, 0) (see Figure 1(a)). Since
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(a) An example of a line along which a solu-
tion u to (2.1) is constant.

(b) A characteristic curve along which a solu-
tion u to (2.2) is constant

Figure 1: Characteristic curves

we worked out that the solution u is constant along lines parallel to v, we know u(x, y, z) = u(x′, y′, 0).
Moreover, the difference between (x, y, z) and (x′, y′, 0) is some multiple α ∈ R of v. That is,

(x, y, z)− (x′, y′, 0) = α(a, b, c).

Since c 6= 0, we have that α = z/c, so x′ = x− za/c and y′ = y − zb/c. Thus,

u(x, y, z) = u(x− za/c, y − zb/c, 0).

Finally, we observe that we are free to choose the value of the solution arbitrarily on the xy-plane, so
the general solution to (2.1) is of the form

u(x, y, z) = f(x− za/c, y − zb/c).

Such a u will solve equation (2.1) provided both first-order partial derivates of f : R2 → R exist.
The cases when a 6= 0 and b 6= 0 can be handled similarly.

2.1 The method of characteristics

Now we have solved (2.1) we can see that the key was to identify lines along which the solution was
constant. Let us take this idea but apply it in a more abstract setting to solve a similar, but more
complicated equation, this time in two variables. Consider the equation

xuy(x, y)− yux(x, y) = 0 for (x, y) ∈ R2 \ {(0, 0)}. (2.2)

This is again a first-order linear equation, but this time with variable coefficients. We will look for
lines in R2 \ {(0, 0)} along which the solution u is constant. Suppose these lines are parametrised by
a variable t and the x-coordinate is given by the function t 7→ X(t) and the y-coordinate by t 7→ Y (t).
Thus we know that

t 7→ u(X(t), Y (t)) is a constant function

Consequently, using the chain rule, we have that

0 =
d

dt
u(X(t), Y (t)) = X ′(t)ux(X(t), Y (t)) + Y ′(t)uy(X(t), Y (t)).

Comparing this with equation (2.2) we see that it is a good idea to choose

X ′(t) = −Y (t), and

Y ′(t) = X(t),
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which have solutions X(t) = α cos(t) and Y (t) = α sin(t) for any α ∈ R (see Figure 1(b)). Thus any
solution to (2.2) is constant on circles centred at the origin and an arbitrary solution can be written in
the form

u(x, y) = f(x2 + y2).

Such a function will solve (2.2) provided f : (0,∞)→ R is differentiable. The curves

{(x, y)|x = X(t), y = Y (t) for some t ∈ R}

are called the characteristic curves (or more simply, the characteristics) of (2.2).
The method we employed here was to search for curves (called characteristic curves) on which the

solution to our PDE behaved in a simple manner. In the previous two examples, the solution was
constant on the characteristic curves, but in principle it only needed to behave in a way we could
compute easily. The problem of solving our PDE was then transformed to the problem of solving a
system of ODEs which the characteristic curves satisfied.

3 The physical origins of some PDEs

In this section we will give some physical motivation for the main equations we will study. We will
not worry about being too careful in our derivation of the equations, but simply want to provide some
physical context for why the equations are of interest. Our careful mathematical analysis will now be
postponed until the next section, where we will take the equations as the starting point.

3.1 Vibrations and the wave equation

(a) The tension T acting on the edge of a
piece of the membrane acts in a direction par-
allel with both the tangent plane of the sur-
face z = u(x, y) and the plane containing the
normal vector n to ∂D and the z-axis. We
assume |T| = T is constant.

(b) To compute the vertical component of the
tension at a point on the edge, consider the
slope of z = u(x, y) in the normal direction

n. This is equal to T (∂u/∂n)√
1+(∂u/∂n)2

which is ap-

proximately T∂u/∂n when ∂u/∂n is small.

Figure 2: Tension acting on a small piece of an elastic membrane

Let us consider a vibrating drumhead. Suppose that an elastic membrane is streached over a
frame ∂D that lies in the xy-plane. For each point x inside the frame (a region D, so x ∈ D) and
time t we denote the displacement of the membrane by u(x, t). We wish to derive a simple equation
that the function u satisfies in D which describes how the membrane behaves when subject to small
displacements.

Assume the membrane has a mass density of ρ and is under constant tension (force per unit
arclength) of magnitude T . Newton’s second law says that the mass times the acceleration of a small
part of the membrane D′ is equal to the (vector) sum of the forces acting on that part. We will assume
the membrane only moves in the vertical direction, so we are interested in the sum of the vectical
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components of the forces acting on a part of the membrane. The force of tension acts parallel to the
surface of the membrane, so its vertical component at each point x ∈ ∂D′ is proportional to

(∂u/∂n)√
1 + (∂u/∂n)2

≈ ∂u

∂n
if (∂u/∂n) is small,

where n is the outward unit normal to ∂D′ and ∂u/∂n = n · ∇u is the normal derivative of u. The
constant of proportionality is the tension T , so the total vertical force is the “sum” of this around the
boundary ∂D′: ∫

∂D′
T
∂u

∂n
(x)dσ(x).

(See Figure 2.) Newton’s second law says this is equal to the mass times the acceleration of D′. Thus∫
∂D′

T
∂u

∂n
(x)dσ(x) =

∫∫
D′
ρutt(x)dx.

The divergence theorem says ∫
∂D′

T
∂u

∂n
(x)dσ(x) =

∫∫
D′

div(T∇u(x))dx,

and so, ∫∫
D′

div(T∇u(x))dx =

∫∫
D′
ρutt(x)dx.

Since D′ was arbitrary, we find that u satisfies

utt(x, t) = c2∆u(x, t) for all x ∈ D and t ∈ R, where c =
√

T
ρ . (3.1)

The equation in (3.1) is called the wave equation

3.2 Diffusion and the heat equation

Let us consider two fluids which together fill a container. We are interested in how these two fluids
will mix. Fick’s law of diffusion states that

the flow of a fluid is proportional to the gradient of its concentration.

Let u(x, t) be the concentration of one fluid at a point x and time t. For an arbitrary region D′ the
mass of the fluid in D′ is

m(t) =

∫∫∫
D′
u(x, t)dx, so

dm

dt
(t) =

∫∫∫
D′
ut(x, t)dx.

The rate of change of mass of fluid in the region D′ is also equal to the net flow of mass into the region
D′. By Fick’s law this is given by

dm

dt
(t) =

∫∫
∂D′

kn · ∇u(x, t)dσ(x).

Therefore using the divergence theorem, we obtain∫∫∫
D′

div(k∇u)(x, t)dx =

∫∫
∂D′

kn · ∇u(x, t)dσ(x) =
dm

dt
(t) =

∫∫∫
D′
ut(x, t)dx.

Once again, since D′ was abitrary, the integrands must also be equal:

ut(x, t) = k∆u(x, t) for all x and t. (3.2)

Equation (3.2) is called the diffusion or heat equation.
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3.3 Harmonic functions

When we consider solutions to both the heat and the wave equation ((3.2) and (3.1)) which are
independent of time, we find that they are both solutions to Laplace’s equation:

∆u(x) =
n∑
j=1

∂2
j u(x) = 0 (3.3)

Functions u which are solutions of (3.3) are called harmonic functions. When n = 1, the only such
functions are linear functions u(x) = kx+ c, but for n > 1 things become more interesting.

4 Boundary value problems and well-posedness

We have derived several different PDEs which model various physical situations, but we have also seen
that there can be many different solutions to any one given PDE. If a PDE is to be a genuinely useful
model, we would expect it to give exactly one possibility for a physical property (which the solution to
the PDE represents). Thus, we must add some further conditions to the model that will pick out the
solution which is physically relevant to a given situation. The precise conditions we have to add vary
slightly depending on the model, but are usually motivated by physical considerations.

4.1 Function spaces

The function space where we look for a solution is a subtle issue, but important. For example, in
quantum mechanics a solution u : R3 ×R→ C to a PDE can be connected to the probability density
of a particle. The probability that a particle lies in a region D ⊂ R3 at time t is given by∫

D
|u(x, t)|2dx.

Since it is a probability, we would expect
∫
R3 |u(x, t)|2dx = 1, and so any physically reasonable solution

u is such that
∫
R3 |u(x, t)|2dx = 1 for all t.

4.2 Initial conditions

An initial condition specifies the solution at a particular instant of time. We typically use the variables
x = (x, y, z) to denote spatial coordinates and t to denote a time coordinate. So an initial condition
can take the form u(x, t0) = f(x) for all x ∈ R (and a given f). We would then search for a solution u
which satisfies a given PDE for t > t0. If we consider heat flow (or diffusion of a chemical), specifying
the temperature (or concentration) at a specific time t = t0, that is prescribing the solution u(·, t0) at
time t0, ought to be sufficient to pin down a unique solution u(·, t) for t > t0. Thus, the problem we
expect to be able to solve is, given a function f : R3 → R, to find a unique function u : R× [t0,∞)→ R
such that {

∂tu(x, t)− k∆u(x, t) = 0 for (x, t) ∈ R3 × (t0,∞), and
u(x, t0) = f(x) for x ∈ R3.

Observe that here the function space we assume u to lie in is also important. For example, if we do
not assume u is continuous at t = t0, the initial condition will not really limit the number of solutions
we have. It can be useful to reformulate the initial condition to take the need for such continuity into
account directly. For example,

lim
t→t0

u(x, t) = f(x) for all x ∈ R3.

Sometimes it is reasonable to give two initial conditions, as is the case with the wave equation.
Given f : R3 → R and g : R3 → R, we expect to find a unique u : R3 × [t0,∞)→ R such that{

∂2
t utt(x, t)− c2∆u(x, t) = 0 for (x, t) ∈ R3 × (t0,∞), and
u(x, t0) = f(x) and ∂tu(x, t0) = g(x) for x ∈ R3.
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4.3 Boundary conditions

Figure 3: A cup with an uneven rim sitting on a table.

The second condition is called a boundary condition and specifies the value of a solution on the
boundary of (what physically is) a spatial domain. For example, take a cup which has an uneven rim,
place it on a table and then stretch a rubber sheet over its rim (see Figure 3). One can show that the
height of the rubber should roughly be given by a harmonic function (with respect to two variables —
those of horizontal position over the table) and the height at the boundary would, of course, be the
height of the rim. Thus, if D is (the interior of) the region of the table over which the cup sits, we
would expect to be able to find a unique u : R2 → R such that{

∆u(x, y) = 0 for all (x, y) ∈ D, and
u(x, y) = f(x, y) for (x, y) ∈ ∂D.

Here ∂D denotes the boundary of D, that is, points above which the cup’s rim sits, and f(x, y) is the
height of the cup’s rim above the table at (x, y) ∈ ∂D.

4.4 Well-posedness

Once we believe we have formulated a physically sensible model, we then want to prove rigorously the
following properties.

1. Existence: There exists at least one solution that satisfies the PDE together with the ini-
tial/boundary conditions and lies in our chosen function space.

2. Uniqueness: There exists at most one solution that satisfies the PDE together with the ini-
tial/boundary conditions and lies in our chosen function space.

3. Stability: The solution depends continuously on the data (that is, the initial/boundary condi-
tions).

We impose the third condition as in practice we cannot measure our data exactly, so it is useful to
know that any small error in measurement will only lead to a small change in the solution.

5 Laplace’s and Poisson’s equation

We said earlier that a solution to Laplace’s equation (3.3) is called harmonic. We will also be interested
in an inhomogeneous version of Laplace’s equation. Namely, Poisson’s equation:

∆u(x) =
n∑
j=1

∂2
j u(x) = f(x) (5.1)

for a given function f .
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5.1 A maximum principle

Maximum principles are very powerful analytic tool for studying harmonic functions. Recall that a set
D ⊂ Rn is called open if for every point x ∈ D, there exists an ε > 0 such that the set {y | |x−y| < ε}
is a subset of D. A set D ⊂ Rn is (path) connected if for every pair of points x,y ∈ D, there exists a
continuous function γ : [0, 1] → D such that γ(0) = x and γ(1) = y. A set D ⊂ Rn is called bounded
if there exists a constant C > 0 such that |x| < C for all x ∈ D.

Theorem 5.1 (Weak Maximum Principle). Let Ω ⊂ Rn be a connected bounded open set. Let u : Ω→
R be a continuous function which is harmonic in Ω. Then the maximum and minimum values of u are
attained on ∂Ω.

From a physical point of view, the Maximum Principle is fairly obvious. For example, a harmonic
function is a stationary solution to the heat equation and one would not expect the hotest part of a
body which has reached an equilibrium to be in the middle of the body.

It can also be motivated mathematically as follows. For example, if n = 2 and we have a maximum
point (x, y) ∈ Ω, then—as can been seen by looking at the second derivative test from Calculus—it
is often the case that uxx(x, y) < 0 and uyy(x, y) < 0. This contradicts the fact that u is harmonic,
which says uxx(x, y) + uyy(x, y) = 0. However, ‘often’ is not ‘always’, so we much work harder in order
to actually prove the theorem.

Proof of Theorem 5.1. For ε > 0 set v(x) = u(x) + ε|x|2. Since v is continuous on Ω it must attain
a maximum somewhere in the compact set Ω. Suppose v attains this maximum x ∈ Ω, then, by the
second derivative test, ∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. On the other hand, we can compute

∆v = ∆u+ 2εn = 2εn > 0.

Therefore v must attain its maximum at a point y ∈ ∂Ω. Thus, for any x ∈ Ω,

u(x) ≤ v(x) ≤ v(y) = u(y) + ε|y|2 ≤ u(y) + εC2,

where C is the constant obtained from the fact D is bounded. Since the above inequality holds for any
ε > 0, we have

u(x) ≤ u(y) = max
∂Ω

u.

That the minimum is attained on the boundary ∂Ω can be proved similarly.

5.2 Uniqueness for the Dirichlet Problem

We can use the Weak Maximum Principle to prove that a solution to the Dirichlet Problem for the
Poisson equation is unique.

Suppose we had two functions u1 and u2 which where continuous on Ω, for an connected bounded
open set Ω ⊂ Rn and such that (for i = 1, 2){

∆ui = f in Ω, and
ui = g on ∂Ω,

(5.2)

where g : ∂Ω→ R and f : Ω→ R.
The difference w := u2 − u1 is continuous on Ω and satisfies{

∆w = 0 in Ω, and
w = 0 on ∂Ω,

We can apply Theorem 5.1 to conclude that both the maximum and the minimum of w are obtained
on the boundary of ∂Ω, but by the boundary condition we know

0 = min
∂Ω

w ≤ w(x) ≤ max
∂Ω

w = 0

9



for any x ∈ Ω. Thus w ≡ 0 and so u1 = u2, that is to say, there is at most one continuous solution
u : Ω→ R of the boundary value problem{

∆u = f in Ω, and
u = g on ∂Ω,

for g : ∂Ω → R and f : Ω → R. Observe that we did not need to make any regularity assumptions
about f or g, although obviously a continuous solution cannot exist unless g is continuous.

5.3 Laplace’s equation in two dimensions

To further investigate the properties of harmonic functions it is instructive to first restrict our attention
to n = 2, so ∆ = ∂2/∂x2 + ∂2/∂y2.

5.3.1 The Laplacian in polar coordinates

We wish to use polar coordinates to rewrite the Laplace operator (Laplacian) in terms of ∂/∂r and
∂/∂θ. The transformation from polar to Cartesian coordinates is given by

x = r cos θ and y = r sin θ

and the inverse is1

r =
√
x2 + y2 and θ = arctan(y/x)

Recall that the chain rule says

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
and

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ

so we obtain
∂

∂x
= cos θ

∂

∂r
+

sin θ

r

∂

∂θ
and

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

Squaring these operators, we obtain

∂2

∂x2
=

(
cos θ

∂

∂r
+

sin θ

r

∂

∂θ

)2

= cos2 θ
∂2

∂r2
− 2

(
sin θ cos θ

r

)
∂2

∂r∂θ
+

sin2 θ

r2

∂2

∂θ2
+

(
sin θ cos θ

r2

)
∂

∂θ
+

sin2 θ

r

∂

∂r

and

∂2

∂y2
=

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)2

= sin2 θ
∂2

∂r2
+ 2

(
sin θ cos θ

r

)
∂2

∂r∂θ
+

cos2 θ

r2

∂2

∂θ2
−
(

sin θ cos θ

r2

)
∂

∂θ
+

cos2 θ

r

∂

∂r
.

These combine to give

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂

∂θ
.

We will use this in the next section to compute an explicit formula for solving Laplace’s equation in
the disc.

1The formula θ = arctan(y/x) is not quite the inverse, as θ may lie outside the range (−π/2, π/2).
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5.3.2 Poisson’s formula via separation of variables

Let D = {x | |x| < a} denote the disc of radius a > 0. We wish to solve the boundary-value problem{
∆u = 0 in D, and

u = h̃ on ∂D,
(5.3)

We will write u in polar coordinates, so Laplace’s equation becomes

∂2u

∂r2
(r, θ) +

1

r

∂u

∂r
(r, θ) +

1

r2

∂u

∂θ
(r, θ) = 0

for 0 < r < a and θ ∈ [0, 2π), and the boundary condition can be written u(a, θ) = h(θ) :=
h̃(a cos θ, a sin θ).

We will search for solutions of the form u(r, θ) = R(r)Θ(θ), a technique which is called separation
of variables and is something we will use several times in the course. The equation becomes

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0

Multiplying by r2/RΘ, we have
r2R′′

R
+
rR′

R
+

Θ′′

Θ
= 0.

Observe that the first and second terms only depend on r and the third term only on θ. Consequently
(why?) we obtain two separate ODEs:

Θ′′ + λΘ = 0 and r2R′′ + rR′ − λR = 0,

for λ ∈ R. These can be easily solved. We must ensure that Θ is periodic: Θ(θ+2π) = Θ(θ) for θ ∈ R.
Thus

λ = m2 and Θ(θ) = Am cos(mθ) +Bm sin(mθ) (m = 0, 1, 2, . . . ).

for Am, Bm ∈ R. The equation for R is of Euler type, so we can search for solutions of the form
R(r) = rα. Substituting this ansatz and λ = m2 into the equation for R we find that α = ±m and

R(r) = Cmr
m +Dmr

−m (m = 1, 2, 3, . . . ) and R(r) = C0 +D0 ln r (m = 0)

for Cm, Dm ∈ R. (The logarithmic solution must be obtained by other means.)
It seems unreasonable to allow solutions which are not continuous near the origin, so we reject

these, which amounts to taking Dm = 0 for all m = 0, 1, 2, . . . . We now consider linear combinations
of what remains:

u(r, θ) =
1

2
A0 +

∞∑
m=1

rm(Am cos(mθ) +Bm sin(mθ)) (5.4)

Finally, making use of the boundary condition, we require that

h(θ) =
1

2
A0 +

∞∑
m=1

am(Am cos(mθ) +Bm sin(mθ)),

which is exactly the Fourier series of h. Thus

Am =
1

πam

∫ 2π

0
h(φ) cos(mφ)dφ and Bm =

1

πam

∫ 2π

0
h(φ) sin(mφ)dφ. (5.5)

So we have found a representation, (5.4) and (5.5), of a solution to (5.3) provided the Fourier series of
h converges to h. However, we can significantly simplify the representation.
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Substituting (5.5) in (5.4) we find that

u(r, θ) =

∫ 2π

0
h(φ)

dφ

2π
+
∞∑
m=1

rm

πam

∫ 2π

0
h(φ) (cos(mφ) cos(mθ) + sin(mφ) sin(mθ)) dφ

=

∫ 2π

0
h(φ)

(
1 + 2

∞∑
m=1

(r
a

)m
cos(m(θ − φ))

)
dφ

2π
.

But (
1 + 2

∞∑
m=1

(r
a

)m
cos(m(θ − φ))

)
= 1 +

∞∑
m=1

(r
a

)m
eim(θ−φ) +

∞∑
m=1

(r
a

)m
e−im(θ−φ)

= 1 +
rei(θ−φ)

a− rei(θ−φ)
+

re−i(θ−φ)

a− re−i(θ−φ)

=
a2 − r2

a2 − 2ar cos(θ − φ) + r2
.

Thus, our formula becomes

u(r, θ) =
(a2 − r2)

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ. (5.6)

This, in turn, can be simplified to

u(x) =
(a2 − |x|2)

2πa

∫
|y|=a

h̃(y)

|x− y|2
dσ(y), (5.7)

where dσ(y) = adφ is arc-length measure and h̃(y) = h(φ) for y = (a cosφ, a sinφ). (See Homework
2.) Both (5.6) and (5.7) are called the Poisson formula for the solution to (5.3). The kernel

K(x,y) =
(|y|2 − |x|2)

2π|y|
1

|x− y|2

is called the Poisson kernel for the disc of radius a.
In our derivation of the Poisson formula, we assumed that the Fourier series of h converged to h.

However, formulae (5.6) and (5.7) can be shown to solve (5.3) when h is just continuous. (Recall that
there exist continuous functions for which the Fourier series diverges at a point, and thus does not
converge to the function.) We will not prove this last step, but just state it as a theorem.

Theorem 5.2. Let D = {x | |x| < a} be the disc of radius a and let h̃ : ∂D → R be a continuous
function. Then there exists a unique continuous function u : D → R which solves (5.3). This function
u is smooth in D (see Lemma 5.5 below) and given by (5.7) (or equally by (5.6) in polar coordinates,
with h(θ) = h̃(a cos θ, a sin θ)).

5.3.3 Mean Value Property and the Strong Maximum Principle

Poisson’s formula has the following applications.

Theorem 5.3 (Mean Value Property in R2). Let Ω ⊂ R2 be an open set and u : Ω → R harmonic.
Then for any disc Da(x) = {y ∈ R2 | |y − x| < a} such that D ⊂ Ω we have that

u(x) =
1

2πa

∫
∂Da(x)

u(y)dσ(y).

That is, the value of u at the centre of a disc is equal to the mean value of u over the boundary of the
disc.
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Proof. By a change of variables and question 4 of homework 2, it suffices to prove the theorem when
x = 0 is the origin and so Da(x) = D from (5.3). We define a function h̃ : Dr(x)→ R by h̃(y) = u(y)
for y ∈ ∂D. Since we proved there is only one continuous solution to (5.3), we know u is given by (5.7)
in D. Thus, in particular,

u(0) =
(a2 − |0|2)

2πa

∫
|y|=a

h̃(y)

|0− y|2
dσ(y)

=
a2

2πa

∫
|y|=a

u(y)

a2
dσ(y)

=
1

2πa

∫
∂Ba(0)

u(y)dσ(y)

The Mean Value Theorem confirms something we would expect from the physical situations har-
monic functions represent. It also has the following corollary.

Figure 4: The existence of w contradicts the fact z is taken to be the last point along the curve which
attains the maximum value M .

Corollary 5.4 (Strong Maximum Principle in R2). Let Ω ⊂ R2 be a connected bounded open set. Let
u : Ω→ R be a continuous function which is harmonic in Ω. Then if the maximum or minimum values
of u are attained in Ω, then u is a constant function.

Proof. Suppose the maximum M is attained at a point x ∈ Ω, so u(x) = M , and that u is not constant,
so there exists a y ∈ Ω such that u(y) < M . In fact, because u is continuous, we can assume y ∈ Ω.
Since Ω is connected, there exists a curve in Ω from x to y (see Figure 4). Since u is continuous, there
exists a point z furthest along the curve towards y such that u(z) = M . Since Ω is open, we can find
a sufficiently small a > 0 such that Da(z) ⊂ Ω. By the Mean Value Property,

M = u(z) =
1

2πr

∫
∂Da(z)

u(w)dσ(w).

Therefore, since u(w) ≤ M , we must have u(w) = M for all w ∈ ∂Da(z), in particular we can find a
w further along the curve such that u(w) = M . This contradicts the fact z was the last such point.

Therefore, either the maximum is not attained in Ω or u is constant. A similar argument proves
the statement for the minimum value.
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Lemma 5.5. Let Ω ⊂ R2 be an open set and u : Ω → R harmonic. Then u possesses all partial
derivatives of all orders (such a function is called smooth).

Proof. By a change of variables and question 4 of homework 2, we may assume 0 ∈ Ω and it suffices to
prove u has all partial derivatives at the origin 0. Using the Poisson formula, we have an formula for
u in a neighbourhood of the origin and it is easy to check this formula can be differentiated as many
times as we wish.

5.4 Laplace’s equation in n dimensions

5.4.1 Green’s first identity

Suppose Ω ⊂ Rn is an open set with a C1-boundary.2 Suppose further that we have two functions
u ∈ C2(Ω) and v ∈ C1(Ω). The product rule tells us that

∂j(v∂ju) = ∂vj∂uj + v∂2
j u

for each j = 1, 2, . . . , n. So
∇ · (v∇u) = ∇v · ∇u+ v∆u.

Applying the divergence theorem, we find∫
∂Ω
v
∂u

∂n
dσ =

∫
Ω

(∇v · ∇u+ v∆u)dV, (5.8)

where ∂u/∂n = n · ∇u and n is the outward unit normal to ∂Ω. Equation (5.8) is called Green’s first
identity.

5.4.2 Mean Value Property and the Strong Maximum Principle

We have the following applications of Green’s first identity (5.8), which generalise the results we proved
earlier when n = 2. Observe that we are required to strengthen our assumptions on u, as we have
not proved that a harmonic function of more than two variables is smooth. However, by being careful
about we apply Green’s first identity, we can avoid the need to assume ∂Ω in the statements below is
C1.

Theorem 5.6 (Mean Value Property in Rn, n ∈ N). Let Ω ⊂ Rn be an open set and let u : Ω → R
be a C2 harmonic function. Then for any ball Ba(x) = {y ∈ Rn | |y−x| < a} such that Ba(x) ⊂ Ω we
have that

u(x) =
1

ωn−1an−1

∫
∂Ba(x)

u(y)dσ(y).

That is, the value of u at the centre of a ball is equal to the mean value of u over the boundary of the
ball.

Proof. We can apply Green’s first identity to the functions u as in the statement of the theorem, v ≡ 1
and Ω = Ba(x). We find that ∫

∂Ba(x)

∂u(y)

∂n
dσ(y) = 0.

Dividing by the area of ∂Ba(x), which is a constant ωn−1 times an−1, we have

0 =
1

ωn−1an−1

∫
∂Ba(x)

∂u(y)

∂n
dσ(y) =

1

ωn−1

∫
∂B1(0)

z · ∇u(x + az)dσ(z) =
1

ωn−1

∫
∂B1(0)

∂u(x + az)

∂a
dσ(z)

=
1

ωn−1

d

da

∫
∂B1(0)

u(x + az)dσ(z) =
d

da

(
1

ωn−1an−1

∫
∂Ba(x)

u(y)dσ(y)

)
.

2This means that ∂Ω can be written as the union of a finite number of sets, each of which is the graph of a C1 function
with respect to a choice of coordinates. More precisely, there exist a positive integer N such that for each i = 1, 2, . . . , N
there exists an open set Ui ⊂ Rn−1, a matrix Ai whose rows form an orthonormal basis for Rn, and a C1 function fi
such that ∂Ω = {y ∈ Rn |y = (x, fi(x))Ai for some i and x ∈ Ui}
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Thus, the quantity in parenthesis on the right-hand side above is constant. Taking the limit a→ 0 we
see that this constant must be u(x), which proves the theorem.

Once again, we can use the mean value property to prove a maximum principle.

Corollary 5.7 (Strong Maximum Principle in Rn, n ∈ N). Let Ω ⊂ Rn be a connected bounded open
set. Let u : Ω→ R be a continuous function which is of class C2 and harmonic in Ω. If the maximum
or minimum values of u are attained in Ω, then u is a constant function.

Proof. The proof of this is identical to that of Corollary 5.4.

5.4.3 Dirichlet’s Principle

We can now demonstrate an important idea which connects harmonic functions to a notion of energy
(borrowed directly from physics). It states that amongst all (reasonably smooth) functions w : Ω→ R
with a given boundary value w = h on ∂Ω, a function u which solves{

∆u = 0 in Ω, and
u = h on ∂Ω,

(5.9)

should minimise some sort of ‘energy’. We now state this idea more precisely.

Theorem 5.8. Suppose that Ω ⊂ Rn is a connected bounded open set with a C1 boundary ∂Ω and h is
a C1 function defined on ∂Ω. For any C1 function w : Ω → R such that w(x) = h(x) for all x ∈ ∂Ω,
define

E[w] =
1

2

∫
Ω
|∇w|2.

Then a solution u ∈ C1(Ω) to (5.9) which is C2 in Ω is such that

E[u] ≤ E[w]

for any w as above.

Proof. Given u and w as above, observe that v := w − u is such that v(x) = 0 for all x ∈ ∂Ω. We can
then compute

2E[w] =

∫
Ω
|∇v +∇u|2 =

∫
Ω

(|∇v|2 + |∇u|2 + 2∇v · ∇u) =

(∫
Ω
|∇v|2

)
+ 2E[u] + 2

∫
Ω
∇v · ∇u.

Applying Green’s first identity (5.8), we see that∫
Ω
∇v · ∇u =

∫
∂Ω
v
∂u

∂n
dσ −

∫
Ω
v∆u = 0.

Thus E[w] ≥ E[u] since
∫

Ω |∇v|
2 ≥ 0.

5.4.4 Green’s second identity and the fundamental solution

In Homework 3 we used Green’s first identity (5.8) to prove Green’s second identity: Green’s second
identity states that for two functions u, v ∈ C2(Ω)∫

Ω
u(x)∆v(x)− v(x)∆u(x)dx =

∫
∂Ω
u(x)

∂v

∂n
(x)− v(x)

∂u

∂n
(x)dσ(x). (5.10)

We also considered the function Φ: Rn \ {0} → R defined by

Φ(x) =

{
− 1

2α(2) ln |x| if n = 2,
1

n(n−2)α(n)
1

|x|n−2 if n > 2,
(5.11)

15



where α(n) is the volume of the unit ball in Rn. The function Φ is called the fundamental solution of
the Laplace operator. We proved Φ was harmonic in Rn \ {0} and

∂Φ

∂n
(x) =

−1

nα(n)

1

|x|n−1
(5.12)

for each n = 2, 3, . . . as a homework exercise.
We can use these facts to prove the following lemma.

Lemma 5.9. Let Ω be an open bounded set with C1 boundary and suppose that u ∈ C2(Ω) is harmonic
in Ω. Then

u(x) =

∫
∂Ω

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y). (5.13)

for each x ∈ Ω

Proof. We wish to apply Green’s second identity (5.10) to the functions Φ(· − x) and u in Ω. However
we cannot as Φ(· − x) is not defined at x. We instead apply (5.10) to Ωr := Ω \Br(x). We obtain

0 =

∫
∂Ωr

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y).

However, ∂Ωr has two components, ∂Ω and ∂Br(x). The integral over ∂Ω is exactly the right-hand
side of (5.13), so we only need to calculate the integral over ∂Br(x). From (5.11) it is clear that Φ is
a radial function—that is, we can write Φ(x) = φ(|x|) for

φ(r) =

{
− 1

2α(2) ln |r| if n = 2,
1

n(n−2)α(n)
1

rn−2 if n > 2.

Remembering that the outward normal n to Ωr is actually an inward normal to Br(x) on ∂Br(x), we
have from (5.12) that

∂Φ

∂n
(y − x) =

1

nα(n)

1

rn−1
.

Thus ∫
∂Br(x)

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y)

=

∫
∂Br(x)

φ(r)

(
∂u

∂n

)
(y)dσ(y)−

∫
∂Br(x)

1

nα(n)

1

rn−1
u(y)dσ(y)

=φ(r)

(∫
∂Br(x)

(
∂u

∂n

)
(y)dσ(y)

)
−

(
1

nα(n)rn−1

∫
∂Br(x)

u(y)dσ(y)

)
.

Applying the divergence theorem (with −n being the outward unit normal), we see that(∫
∂Br(x)

(
∂u

∂n

)
(y)dσ(y)

)
= −

∫
Br(x)

∆u(y)dy = 0.

Since nα(n)rn−1 is the surface area of ∂Br(x),3 the mean value property (Lemma 5.6) says(
1

nα(n)rn−1

∫
∂Br(x)

u(y)dσ(y)

)
= u(x).

Putting these facts together, we see the lemma is proved.

3Prove this!
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5.4.5 Green’s functions

At first sight (5.13) appears to be a useful formula, as it expresses a harmonic function in a domain
Ω in terms of its behaviour on the boundary ∂Ω. However, physically we do not expect to have to
specify both the value of u and the value of ∂u/∂n on the boundary. Therefore we wish to modify the
fundamental solution (5.11) somewhat to eliminate one of the terms in (5.13).

To be more precise, suppose we wanted to solve the same boundary value problem we considered
in Section 5.4.3: {

∆u = 0 in Ω, and
u = h on ∂Ω.

(5.9)

If we can find a modification G of Φ which has very similar properties to Φ but is also zero on the
boundary, then we should be able to solve (5.9) via a formula like (5.13).

We now make this ideas more precise.

Definition 5.10. Let Ω ⊂ Rn be an open bounded set with C1 boundary. A function G : Ω× Ω → R
is called a Green’s function for the Laplacian in Ω if:

1. the function y 7→ G(x,y) belongs to C2(Ω \ {x}) and is harmonic for x 6= y;

2. G(x,y) = 0 for all y ∈ ∂Ω and x ∈ Ω;

3. for each x ∈ Ω, the function y 7→ G(x,y) − Φ(y − x) has a continuous extension which belongs
to C2(Ω) and is harmonic in Ω.

By section 5.2, we already know any solution u to (5.9) is unique. The following theorem transforms
the problem of proving the existence of solutions to (5.9) to that of proving the existence of a Green’s
function.

Theorem 5.11. Let Ω ⊂ Rn be an open bounded set with C2 boundary and suppose h ∈ C2(∂Ω).4 If
G is a Green’s function for the Laplacian in Ω then the solution of (5.9) is given by

u(x) = −
∫
∂Ω

(
∂G(x, ·)
∂n

(y)

)
h(y)dσ(y). (5.14)

where (∂G(x, ·)/∂n)(y) := n(y) · ∇yG(x,y) is the normal derivative of y 7→ G(x,y).

Proof. Apply Green’s second identity (5.10) to the functions u and y 7→ G(x,y) − Φ(y − x) and add
the result to (5.13).

Theorem 5.12. Let Ω ⊂ Rn be an open bounded set with C2 boundary.

1. There exists at most one Green’s function for the Laplacian in Ω.

2. G(x,y) = G(y,x) for all x,y ∈ Ω.

Proof. See Homework 4.

5.4.6 Finding the Green’s function: the example of the upper half-plane

Let us now take a concrete example and calculate the Green’s function. We will consider the upper
half-plane Rn

+. You will notice immediately that Rn
+ is not bounded, so does not fit into the theory

we have discussed so far. But the ideas we will discuss are a little clearer. Once we have derived our
formula, we will prove rigorously that it is does what we hope.

Observe that property 3 of Definition 5.10 requires that for each fixed x ∈ Rn
+ the function y 7→

vx(y) := G(x,y)− Φ(y − x) is harmonic in Rn
+. We can also see from property 2 that

vx(y) := G(x,y)− Φ(y − x) = −Φ(y − x) for y ∈ Rn
+.

4If we look back at how we proved Green’s identities, it is clear that in fact we only need to assume Ω has a C1

boundary and h ∈ C1(∂Ω).
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Whence, vx is a solution to the boundary value problem{
∆vx = 0 in Rn

+, and
vx = −Φ(· − x) on ∂Rn

+.
(5.15)

However, we can use the symmetry of the domain Rn
+ and of Φ to find a solution to (5.15). For

x = (x1, x2, . . . , xn−1, xn) define x̃ = (x1, x2, . . . , xn−1,−xn) to be the reflection in the plane ∂Rn
+

(see Figure 5). Then, for y ∈ ∂Rn
+, we have |y − x| = |y − x̃|, and since Φ is a radial function

Φ(y−x) = Φ(y− x̃). Moreover, since x̃ 6∈ Rn
+, y 7→ Φ(y− x̃) is harmonic in Rn

+. That is, the solution
to (5.15) is vy(x) = −Φ(y − x̃). Which means the Green’s function for Rn

+ is

G(x,y) = Φ(y − x)− Φ(y − x̃) (5.16)

In order to make use of (5.14), we need to compute ∂G(x,·)
∂n . We can easily check that

∂G(x,y)

∂yn
=

2xn
nα(n)

1

|x− y|n

and since the outward unit normal to ∂Rn
+ is n = (0, 0, . . . , 0,−1),

∂G(x, ·)
∂n

(y) = − 2xn
nα(n)

1

|x− y|n
.

Thus, we expect

u(x) =

{ ∫
∂Rn

+

2xn
nα(n)

1
|x−y|nh(y)dσ(y) if x ∈ Rn

+;

h(x) if x ∈ ∂Rn
+.

(5.17)

to solve (5.9). As we said, we cannot apply Theorem 5.11 on an unbounded domain, but our next
theorem proves that (5.17) does indeed provide a solution to (5.9).

Figure 5: The point x̃ is the mirror image of x in the hyperplane ∂Rn
+.

Theorem 5.13. Suppose h ∈ C(∂Rn
+) is a bounded function. Then u : Rn

+ → R defined by (5.17) is

a continuous function in R
n
+ and solves (5.9). Moreover, if there exists an R > 0 such that h(y) = 0

when |y| > R, then (5.17) is the only solution to (5.9) such that u(x)→ 0 as |x| → ∞.

Proof. First, we will show that u defined by (5.17) is harmonic in Rn
+. We know that, for x ∈ ∂Rn

+,
y 7→ G(x,y) is smooth and harmonic in Rn

+. Because of Theorem 5.12, G(x,y) = G(y,x), so x 7→
G(x,y) and x 7→ ∂ynG(x,y) := K(x,y) is harmonic in Rn

+ for y ∈ ∂Rn
+. (This can also be checked by

direct calculation.) We can also compute that

1 =

∫
∂Rn

+

K(x,y)dσ(y) (5.18)

18



Since h is bounded and K is smooth, u defined by (5.17) is smooth in Rn
+ and we can interchange

differentiation and integration, so

∆u(x) =

∫
∂Rn

+

∆xK(x,y)h(y)dσ(y) = 0.

We now need to show that u is continuous, in particular continuous at the boundary ∂Rn
+. Fix

x0 ∈ ∂Rn
+ and ε > 0. Since h is continuous we can find a δ > 0 such that

|h(y)− h(x0)| < ε if |y − x0| < δ and y ∈ ∂Rn
+. (5.19)

If |x− x0| < δ/2 and x ∈ Rn
+, then

|u(x)− h(x0)| =

∣∣∣∣∣
∫
∂Rn

+

K(x,y)(h(y)− h(x0))dσ(y)

∣∣∣∣∣
≤
∫
∂Rn

+∩Bδ(x0)
K(x,y)|h(y)− h(x0)|dσ(y)

+

∫
∂Rn

+\Bδ(x0)
K(x,y)(h(y)− h(x0))dσ(y)

=: I + J.

Now (5.18) and (5.19) imply

I ≤ ε
∫
∂Rn

+

K(x,y)dσ(y) = ε.

Furthermore, if |x− x0| < δ/2 and y ∈ ∂Rn
+ \Bδ(x0), then

|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+ δ/2 ≤ |y − x|+ |y − x0|/2,

so |y − x| ≥ 1
2 |y − x0|. Thus

J ≤ 2‖h‖L∞
∫
∂Rn

+\Bδ(x0)
K(x,y)dσ(y)

≤ 2n−2‖h‖L∞xn
nα(n)

∫
∂Rn

+\Bδ(x0)
|y − x0|−ndσ(y)→ 0

as xn → 0. Thus, we see that |u(x)− h(x0)| ≤ 2ε provided |x− x0| is sufficiently small.
To prove that (5.17) is the only solution the only solution to (5.9) such that u(x)→ 0 as |x| → ∞

we may also assume that there exists an R > 0 such that h(y) = 0 when |y| > R. Therefore, if
|x| ≥ 2kR for k ∈ N, then

|u(x)| =

∣∣∣∣∣
∫
∂Rn

+

K(x,y)h(y)dσ(y)

∣∣∣∣∣
≤ 2

nα(n)

∫
∂Rn

+

|x− y)|1−n|h(y)|dσ(y)

≤ 2−(n−1)kR−(n−1)

nα(n)
Rn‖h‖L∞ =

2−(n−1)kR‖h‖L∞
nα(n)

Suppose v was a second solution to (5.17) such that u(x)→ 0 as |x| → ∞. Then u(y)− v(y) = 0 for
y ∈ ∂Rn

+. For each ε > 0 we can choose k sufficiently large so that |u(x)| + |v(x)| ≤ ε for |x| > 2kR.
Then by the Weak Maximum Principle (Theorem 5.1), we have that |u(x) − v(x)| < ε for |x| ≤ 2kR.
Since ε > 0 was arbitrary, we must have u(x) = v(x).
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6 The wave equation

6.1 One spatial dimension: d’Alembert’s formula

We will now consider the wave equation{
∂2
t u(x, t)− c2∂2

xu(x, t) = 0 for x ∈ R and t > 0,
u(x, 0) = g(x) and ∂tu(x, 0) = h(x) for x ∈ R.

(6.1)

As we discussed in Section 4.2, physically this is a reasonable initial value problem to try to solve. A
helpful property of this equation is that the associated operator factors, so we can rewrite (6.1) as

(∂t + c∂x)(∂t − c∂x)u(x, t) = 0.

This means that finding u solving (6.1) is equivalent to finding u and v solving the system{
∂tv(x, t) + c∂xv(x, t) = 0
∂tu(x, t)− c∂xu(x, t) = v(x, t)

(6.2)

We can use the method of characteristics to solve (6.2). Indeed, both equations in (6.2) are of the form
of (†) in Homework 1. Looking at the first equation in (6.2), we need to apply (‡) from Solutions 1
with n = 1, b = c and f(x, t) = 0. The solution is thus

v(x, t) = a(x− ct),

for some function a such that v(x, 0) = a(x). (Observe, we cannot make use of the initial conditions
for u at this point.) Substituting this solution in the second equation in (6.2), we now need to solve

∂tu(x, t)− c∂xu(x, t) = a(x− ct).

Applying (‡) from Solutions 1 with n = 1, b = −c, f(x, t) = a(x− ct) and g(x) = g(x), we see that

u(x, t) = g(x+ ct) +

∫ t

0
a((x+ cs)− c(t− s))ds = g(x+ ct) +

∫ t

0
a(x− ct+ 2cs)ds

= g(x+ ct) +
1

2c

∫ x+ct

x−ct
a(y)dy.

Although this is a formula for the solution u, a is still unknown to us. To find out what a is, we need
to make use of the initial condition ∂tu(x, 0) = h(x). Differentiating the formula above yields (with
the help of the First Fundamental Theorem of Calculus (analysens huvudsats))

∂tu(x, t) = cg′(x+ ct) +
1

2c
(ca(x+ ct) + ca(x− ct))

and setting t = 0 gives h(x) = ∂tu(x, 0) = cg′(x) + a(x), so a(x) = h(x)− cg′(x) and

u(x, t) = g(x+ ct) +
1

2c

∫ x+ct

x−ct
h(y)− cg′(y)dy

=
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(y)dy.

(6.3)

Formula (6.3) is called d’Alembert’s formula.

Theorem 6.1. Assume that g ∈ C2(R) and h ∈ C1(R). Then u defined by (6.3) is a C2(R× [0,∞))
function and solves (6.1).

Proof. The proof is a standard calculation using the First Fundamental Theorem of Calculus.
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6.2 Causality

D’Alembert’s formula (6.3) shows us that the solution of the wave equation u(x, t) at a point (x, t) is
influenced only by the initial data within a certain range of values. More precisely, we can see that
u(x, t) depends only on the values of g at x − ct and x + ct and the values of h between x − ct and
x + ct. With this fact in mind, we call the region D = {(y, s) ∈ R2

+ |x − c(t − s) ≤ y ≤ x + c(t − s)}
the domain of dependence of the point (x, t) (see Figure 6(a)).

Turning the argument on its head, the values of the data at (x, 0) only affect the solution at points
(y, s) such that |y− x| ≤ cs so I = {(y, s) ∈ R2

+ |x− ct ≤ y ≤ x+ ct} is called the domain of influence
of the point (x, 0) (see Figure 6(b)).

(a) The domain of dependence D of a point
(x, t) is the region enclosed by the triangle
with vertices (x, t), (x− ct, 0) and (x+ ct, 0).

(b) The domain of influence I of a point (x, 0)
is the wedge with vertex at (x, 0) and two
edges with equations y = x−ct and y = x+ct.

Figure 6: Causality for the wave equation

But why are we talking about regions in R2
+ when the data is given on the boundary ∂R2

+ of the
upper-half plane? This is because we can generalise d’Alembert’s formula to a wave equation with a
source term: {

∂2
t u(x, t)− c2∂2

xu(x, t) = f(x, t) for x ∈ R and t > 0,
u(x, 0) = g(x) and ∂tu(x, 0) = h(x) for x ∈ R.

(6.4)

The function f : R2
+ → R is called a source as physically it can represent an external applied force,

which is a source of energy for the physical system. (We will discuss energy further in Section 6.3.)
The following theorem, which identifies a solution to (6.4), also shows us that the solution u at a point
(x, t) only depends on the values of f in the domain of dependence of the point (x, t).

Theorem 6.2. Assume that g ∈ C2(R), h ∈ C1(R) and f ∈ C1(R2
+). Then u defined by

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(y)dy +

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds (6.5)

is a C2(R× [0,∞)) function and solves (6.4).

Proof. We recognise the first two terms in (6.5) from (6.3), so we know these two terms provide a
solution to (6.1). Since the wave equation is linear, it only remains to check that the last term in (6.5)

v(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds

is a C2(R× [0,∞)) function and solves{
∂2
t v(x, t)− c2∂2

xv(x, t) = f(x, t) for x ∈ R and t > 0,
v(x, 0) = 0 and ∂tv(x, 0) = 0 for x ∈ R.

21



Clearly v(x, 0) = 0. We also have

∂tv(x, t) =
1

2c

∫ x

x
f(y, t)dy +

1

2c

∫ t

0
cf(x+ c(t− s), s) + cf(x− c(t− s), s)ds

=
1

2

∫ t

0
f(x+ c(t− s), s) + f(x− c(t− s), s)ds,

so, in particular, ∂tv(x, 0) = 0. Furthermore

∂ttv(x, t) =
1

2
(f(x, t) + f(x, t)) +

c

2

∫ t

0
∂1f(x+ c(t− s), s)− ∂1f(x− c(t− s), s)ds

= f(x, t) +
c

2

∫ t

0
∂1f(x+ c(t− s), s)− ∂1f(x− c(t− s), s)ds

and

∂xv(x, t) =
1

2c

∫ t

0
f(x+ c(t− s), s)− f(x− c(t− s), s)ds,

so

∂xxv(x, t) =
1

2c

∫ t

0
∂1f(x+ c(t− s), s)− ∂1f(x− c(t− s), s)ds.

Therefore

∂ttv(x, t)− c2∂xxv(x, t) = f(x, t) +
c

2

∫ t

0
∂1f(x+ c(t− s), s)− ∂1f(x− c(t− s), s)ds

− c

2

∫ t

0
∂1f(x+ c(t− s), s)− ∂1f(x− c(t− s), s)ds

= f(x, t).

Finally, we see that both ∂ttv and ∂xxv are continuous and we can also compute

∂txv(x, t) = ∂xtv(x, t) =
1

2

∫ t

0
∂1f(x+ c(t− s), s) + ∂1f(x− c(t− s), s)ds,

which is continuous too, so v ∈ C2(R× [0,∞)).

6.3 Energy

Recall from (3.1) that c2 = T/ρ where T is tension and ρ is mass density. We know from physics that
the energy associated with motion (kinetic energy) is given by half of the mass times velocity squared.
Since a solution u to the wave equation represents the position of a string (when n = 1), we expect the
kinetic energy of the whole string to be

1

2

∫ ∞
−∞

ρ(∂tu(x, t))2dx.

The elastic energy stored in the string by virtue of its shape is proportional to its deformation — such
energy is a form of potential energy. Although energy will be transformed from kinetic to potential
and back again as the string vibrates, we would expect the total energy to be conserved. This is the
content of the next theorem.

Theorem 6.3. Assume that u ∈ C2(R × [0,∞)) solves ∂ttu(x, t) − c2∂xxu(x, t) = 0 (with c2 = T/ρ),
is such that ∂tu(x, t)→ 0 and ∂xu(x, t)→ 0 as x→ ±∞, and the integrals∫ ∞

−∞
|∂αu(x, t)|2dx

22



converge uniformly in t, where ∂α is any derivative of order less than or equal to two.5 Define the
energy of u at time t by

E[u](t) =
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx.

Then E[u] is a constant function.

Proof. Differentiating the kinetic energy and using the wave equation u solves, we have

d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2dx

)
=

1

2

∫ ∞
−∞

ρ∂tu(x, t)∂ttu(x, t)dx

=
1

2

∫ ∞
−∞

T∂tu(x, t)∂xxu(x, t)dx = −1

2

∫ ∞
−∞

T∂txu(x, t)∂xu(x, t)dx

= − d

dt

(
1

2

∫ ∞
−∞

T (∂xu(x, t))2dx

)
.

Therefore
d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx

)
= 0

and the theorem is proved.

Remark 6.4. We can modify the defintion of energy by a multiplicative factor and we would still have
a conserved quantity. Indeed if we modified the definition by dividing by ρ, the energy would be

1

2

∫ ∞
−∞

(∂tu(x, t))2 + c2(∂xu(x, t))2dx

which is an expression which only involves constants (namely c) which directly appear in the wave
equation. However, the definition we have taken is consistent with that used in physics.

Corollary 6.5. (a) For any given functions g and h, there is at most one solution u to (6.1) which
satisfies the same hypothesis as in Theorem 6.3.

(b) For any given functions g, h and f , there is at most one solution u to (6.4) which satisfies the
same hypothesis as in Theorem 6.3.

Proof. In both cases the difference of two solutions w = u1−u2 solves (6.1) with g = h = 0. Therefore,
by Theorem 6.3,

1

2

∫ ∞
−∞

ρ(∂tw(x, t))2 + T (∂xw(x, t))2dx = E[w](t) = E[w](0) = 0.

In particular this implies ∂tw(x, t) = 0, so w(x, t) is a function of x only and in particular w(x, t) =
w(x, 0). But this function must be zero, since w(x, 0) = 0.

6.4 Reflections

6.4.1 Waves on the half-line

So far we have only considered the wave equation on the real line, which would model the motion of
a vibrating string which is infinitely long. This is perhaps slightly unrealistic, as we are much more
likely to encounter strings of finite length in the real world. In this section we will consider a situation
which could be described as half-way between an infinitely long string and a finite length string. In
Section 6.4.2 we will extend the method used here to deal with the finite case.

5For those who are familiar with the notation, α is a multi-index with order |α| ≤ 2.
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We will consider the wave equation on the positive half-line with a Dirichlet boundary condition.
Given g, h : [0,∞)→ R we wish to find v : [0,∞)× [0,∞)→ R such that

∂ttv(x, t)− c2∂xxv(x, t) = 0 for x ∈ (0,∞) and t > 0,
v(x, 0) = g(x) and ∂tv(x, 0) = h(x) for x ∈ [0,∞), and
v(0, t) = 0 for t > 0.

(6.6)

We can relate (6.6) to the analogous problem (6.1) on the whole real line. Suppose u solved (6.1)
with initial values godd and hodd, the odd extensions of g and h:

godd(x) :=

{
g(x) if x ≥ 0, and
−g(−x) if x < 0;

and

hodd(x) :=

{
h(x) if x ≥ 0, and
−h(−x) if x < 0.

Exercise 2 from Homework 5 shows that

u(x, t) =
1

2
(godd(x+ ct) + godd(x− ct)) +

1

2c

∫ x+ct

x−ct
hodd(y)dy (6.7)

would be an odd function for each t > 0. Thus, in particular u(0, t) = 0 for all t > 0, and v(x, 0) = g(x)
and ∂tv(x, 0) = h(x) for all x ∈ [0,∞), so u restricted to x ≥ 0 is the solution to (6.6) we are looking
for.

Observe that if (6.7) is to be a solution to (6.1) then according to Theorem 6.1 we need to know
that godd ∈ C2(R) and hodd ∈ C1(R). This will only be the case if g ∈ C2([0,∞)) and h ∈ C1([0,∞))
and g(0) = h(0) = 0.

We formulate the preceeding discussion as a theorem.

Theorem 6.6. Suppose g ∈ C2([0,∞)), h ∈ C1([0,∞)) and g(0) = h(0) = 0. Then the function
v : [0,∞)× [0,∞)→ R defined by

v(x, t) =
1

2
(godd(x+ ct) + godd(x− ct)) +

1

2c

∫ x+ct

x−ct
hodd(y)dy.

for x ≥ 0 and t ≥ 0 is a C2([0,∞)× [0,∞)) function which solves (6.6).

6.4.2 Waves on a finite interval

Now consider the wave equation on a finite interval [0, `] with Dirichlet boundary conditions. Given
g, h : [0, `→ R we wish to find v : [0, `]× [0,∞)→ R such that

∂ttv(x, t)− c2∂xxv(x, t) = 0 for x ∈ (0, `) and t > 0,
v(x, 0) = g(x) and ∂tv(x, 0) = h(x) for x ∈ [0, `], and
v(0, t) = 0 and v(`, t) = 0 for t > 0.

(6.8)

Once again, we can relate (6.8) to the analogous problem (6.1) on the whole real line. Suppose u
solved (6.1) with initial values gext and hext, the following extensions of g and h:

gext(x) :=

{
g(x− 2`n) if x ∈ [2`n, 2`n+ `] for some n ∈ Z,
−g(−x− 2`n) if x ∈ (2`n− `, 2`n) for some n ∈ Z;

so gext is an odd extension of g with respect to both x = 0 and x = ` (and also 2`-periodic), and

hext(x) :=

{
h(x− 2`n) if x ∈ [2`n, 2`n+ `] for some n ∈ Z,
−h(−x− 2`n) if x ∈ (2`n− `, 2`n) for some n ∈ Z;

so hext is also an odd extension of h with respect to both x = 0 and x = ` (and 2`-periodic).
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Exercise 2 from Homework 5 and the translation invariance of the wave equation proved in Exercise
5a of Homework 5 shows that

u(x, t) =
1

2
(gext(x+ ct) + gext(x− ct)) +

1

2c

∫ x+ct

x−ct
hext(y)dy

would be an odd function with respect to both x = 0 and x = ` for each t > 0. Thus, in particular
u(0, t) = 0 and u(`, t) = 0 for all t > 0, and v(x, 0) = g(x) and ∂tv(x, 0) = h(x) for all x ∈ [0, `], so u
restricted to 0 ≤ x ≤ ` is the solution to (6.8) we are looking for.

We must also once again impose conditions on g and h that ensure gext and hext are suitable smooth.
All these considerations give us the following theorem.

Theorem 6.7. Suppose g ∈ C2([0, `]), h ∈ C1([0, `]) and g(0) = h(0) = g(`) = h(`) = 0. Then the
function v : [0,∞)× [0,∞)→ R defined by

v(x, t) =
1

2
(gext(x+ ct) + gext(x− ct)) +

1

2c

∫ x+ct

x−ct
hext(y)dy.

for 0 ≤ x ≤ ` and t ≥ 0 is a C2([0, `]× [0,∞)) function which solves (6.8).

7 The heat equation

We now move on to study another PDE that appeared in Section 3, namely the heat equation (Section
3.2). For simplicity we will take the proportionality constant k that appeared there to be equal to
one. We will posed similar questions to those we asked regarding Laplace’s equation and the wave
equation, but we will see that the answers demonstrate there are differences between the PDEs as well
as similarities.

7.1 Another maximum principle

In this section we will consider solutions u : Ω×[0, T ]→ R to the heat equation ∂tu(x, t)−∆u(x, t) = 0,
where Ω ⊂ Rn is an open bounded connected set and T > 0. We begin with a property that is very
similar to one exhibited by harmonic functions. It’s proof is also similar to the case of harmonic
functions, but we repeat it in detail here for completeness.

Theorem 7.1 (Weak Maximum Principle). Suppose Ω ⊂ Rn is an open bounded connected set and
T > 0. Let u : Ω × [0, T ] → R be a continuous function which is also a solution to the heat equation
∂tu(x, t) − ∆u(x, t) = 0 for (x, t) ∈ Ω × (0, T ]. Then the maximum value of u is attained at a point
(x, t) ∈ Ω× [0, T ] such that either t = 0 or x ∈ ∂Ω.

Remark 7.2. Theorem 7.1 says that the maximum of u is either obtained initially (t = 0) or on the
lateral edges of the domain (x ∈ ∂Ω).

Theorem 7.1 does not rule out the possibility that the maximum is also obtained in Ω × (0, T ]. It
turns out, however, that one can rule out such a possibility, although the proof is much more difficult,
so we will not do this here.

Just as for Theorem 5.1, we can make an analogous statement about the minimum of u.

Proof of Theorem 7.1. For ε > 0 set v(x, t) = u(x, t) + ε|x|2. Since v is continuous on the compact set
Ω× [0, T ] it must attain a maximum somewhere in Ω× [0, T ].

Suppose v attains this maximum at (x, t) with x ∈ Ω and 0 < t ≤ T , then, by the first derivative
test, ∂tu(x, t) = 0 and by the second derivative test, ∆v(x) =

∑n
j=1 ∂

2
j v(x) ≤ 0. This means

∂tv(x, t)−∆v(x, t) ≥ 0− 0 = 0.

On the other hand, since u solves the heat equation, we can compute

∂tv(x, t)−∆v(x, t) = ∂tu(x, t)−∆u(x, t)− 2nε = 0− 2nε < 0,
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which is a contradiction.
Therefore v must attain its maximum at a point (x, t) for which either x ∈ ∂Ω or t = 0. Set

M = max(x,t)∈B u(x, t) where B = (Ω× {0}) ∪ (∂Ω× (0, T ]), then

max
Ω×[0,T ]

u ≤ max
Ω×[0,T ]

v ≤ max
B

v ≤ max
B

u+ εD = M + εD.

Since ε is arbitrary we must have maxΩ×[0,T ] u ≤M .

Theorem 7.1 can be used to prove the uniqueness of solutions to initial boundary value problems
for the heat equation (see homework), however we will use the energy method below to prove the same
result.

7.2 Uniqueness and stability via the energy method

Consider the initial boundary value problem
∂tu(x, t)−∆u(x, t) = 0 for x ∈ Ω and t ∈ (0, T ];

u(x, 0) = φ(x) for x ∈ Ω; and
u(y, t) = g(y, t) for y ∈ ∂Ω and t ∈ (0, T ].

(7.1)

One can show that if g = 0, the quantity ∫
Ω
|u(x, t)|2dx

is a decreasing function of t. Indeed, suppose u ∈ C1(Ω× [0, T ]) and is also a solution to (7.1). Then
using (5.8)

d

dt

∫
Ω
|u(x, t)|2dx =

∫
Ω
u(x, t)∂tu(x, t)dx

=

∫
Ω
u(x, t)∆u(x, t)dx = −

∫
Ω
∇u(x, t)∇u(x, t)dx = −

∫
Ω
|∇u(x, t)|2dx ≤ 0.

In particular, we have

0 ≤
∫
Rn

|u(x, t)|2dx ≤
∫
Rn

|φ(x)|2dx

for all t ∈ [0, T ]. This means that if we had two solutions u1 and u2 of (7.1), then their difference
w = u2 − u2 would satsify (7.1) with φ = 0 and g = 0, so

0 ≤
∫
Rn

|u2(x, t)− u1(x, t)|2dx =

∫
Rn

|w(x, t)|2dx ≤ 0.

Whence u1 = u2. This proves the following theorm.

Theorem 7.3. There is at most one function u ∈ C1(Ω× [0, T ]) which is also a solution to (7.1).

The same method also tells us the solution depends continuously on the data. Recall this was the
third criteria, which we called stability, required in Section 4.4 for a problem to be well-posed.

Theorem 7.4. Suppose ui ∈ C1(Ω× [0, T ]) solves (7.1) with g = gi and φ = φi for i = 1, 2. If g1 = g2,
then

0 ≤
∫

Ω
|u2(x, t)− u1(x, t)|2dx ≤

∫
Ω
|φ2(x)− φ1(x)|2dx

A similar, but different stability can be proved for the heat equation using the Weak Maximum
Principle (Theorem 7.1).
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7.3 The initial value problem on the real line

Now consider the initial value problem{
∂tu(x, t)− ∂xxu(x, t) = 0 for x ∈ R and t ∈ (0,∞);
u(x, 0) = φ(x) for x ∈ R.

(7.2)

In this section we will show that it is possible to find a solution to such a problem. To do this the
function S : R× (0,∞)→ R defined by

S(x, t) =
1

2
√
πt
e−x

2/4t

will be extremely important to us. This function is called the heat kernel. In Chapter 2.4 of Strauss a
justification for studying this particular function is given.

Observe that

∂tS(x, t) =
−1

4
√
πt3/2

e−x
2/4t +

x2

8
√
πt5/2

e−x
2/4t

and
∂xS(x, t) = − x

4
√
πt3/2

e−x
2/4t

so

∂xxS(x, t) = − 1

4
√
πt3/2

e−x
2/4t +

x2

8
√
πt5/2

e−x
2/4t.

This implies ∂tS(x, t)− ∂xxS(x, t) = 0, that is, S solves the heat equation.
For each t > 0 the function x 7→ S(x, t) is a Gaussian. You may have encountered such a function

before in perhaps Calculus (as a function we can integrate on the real line without calculating a
primative function) or probability theory (normal distributions). Observe that for small t the graph of
x 7→ S(x, t) has a tall thin spike around zero and decays rapidly to zero as |x| increases. For large t,
the graph of x 7→ S(x, t) is fattened out, so that the spike at zero is more like a gentle hill. Consider
the integral

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy. (7.3)

If t is small, the integral in (7.3) would average φ over a very small interval near x. If we let t → 0
we might expect these averages of φ near x to converge to φ(x). Moreover, because S solves the heat
equation and the heat equation is translation invariant (that is, (x, t) 7→ S(x − y, t) is also a solution
for each y ∈ R) we expect (7.3) to also be a solution to the wave equation, as it is essentially a linear
combination of solutions. This means, that we would guess that (7.3) would be a solution to (7.2).
This guess is in fact correct, as the following proof shows.

Theorem 7.5. Let φ : R → R be a bounded continuous function. Then (7.3) defines an infinitely
differentiable function on the set R2

+ := {(x, t) |x ∈ R, t > 0}, which satisfies ∂tu(x, t)− ∂xxu(x, t) = 0
for (x, t) ∈ R2

+ and limt→0+ u(x, t) = φ(x) for each x ∈ R.

Proof. First we perform a change of variables

u(x, t) =

∫ ∞
−∞

S(x− y, t)φ(y)dy =

∫ ∞
−∞

S(z, t)φ(x− z)dz =

∫ ∞
−∞

S(p
√
t, t)φ(x− p

√
t)
√
tdp.

Then it is easy to see that S(p
√
t, t)φ(p

√
t− x)

√
t = e−p

2/4

2
√
π
φ(p
√
t− x). This means that the integrand

is bounded above by 1
2
√
π

supy∈R |φ(y)|e−p2/4, so the integral in p above converges uniformly in x and
t.

Moreover, u(x, t) will be differentiable any number of times with respect to x or t, say α times,
where α is a multi-index, and equal to

∂αu(x, t) =

∫ ∞
−∞

∂αS(x− y, t)φ(y)dy
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provided we can justify interchanging differentiation and integration. To justify this is suffices to show
the integrand above is uniformly integrable. This can be done just as before, since differentiating S
just introduces a polynomial in p in front of e−p

2/4 (together with factors of t). This polynomial growth
is not enough to destroy the uniform convergence of the integral due to the exponential decay e−p

2/4.
For example,∫ ∞

−∞
∂1S(x− y, t)φ(y)dy =

∫ ∞
−∞

∂1S(z, t)φ(z − x)dz =

∫ ∞
−∞

∂1S(p
√
t, t)φ(p

√
t− x)

√
tdp.

Since ∂1S(x, t) = − x
4
√
πt3/2

e−x
2/4t, we have that ∂1S(p

√
t, t)φ(p

√
t − x)

√
t = −pe−p

2/4

4
√
πt

φ(p
√
t − x) so,

because |∂1S(p
√
t, t)φ(p

√
t − x)

√
t| ≤ pe−p

2/4

4
√
πt

supy∈R |φ(y)|, we see that ∂1S(p
√
t, t)φ(p

√
t − x)

√
t is

integrable in p uniformly in x and t.
Now we know that we can justify interchanging differentiation and integration, it follows from the

fact that S solves the heat equation, that (7.3) also solves the heat equation.
It remains to prove the initial condition holds. We can calculate that∫ ∞

−∞
S(x, t)dx = 1.

Therefore

u(x, t)− φ(x) =

∫ ∞
−∞

S(x− y, t)(φ(y)− φ(x))dy =

∫ ∞
−∞

S(p
√
t, t)(φ(p

√
t− x)− φ(x))

√
tdp

=

∫ ∞
−∞

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp.

The idea of the proof from here is to split the integral in two. The integral over p close to the origin
will be small because |φ(p

√
t − x) − φ(x)| will be small if t is small. Recalling that the graph of

p 7→ 1
2
√
π
e−p

2/4 will look like a bump centred at the origin and decay quickly away from the origin, the

integral over large p will be also be small.
Fix ε > 0. We choose δ > 0 so small that

max
|y−x|≤δ

|φ(y)− φ(x)| < ε/2

Then we rewrite the integral as∫ ∞
−∞

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp

=

∫
|p|<δ/

√
t

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp+

∫
|p|≥δ/

√
t

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp

We can bound the first integral using our choice of δ:∣∣∣∣∣
∫
|p|<δ/

√
t

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp

∣∣∣∣∣ ≤ ε

2

∫
|p|<δ/

√
t

1

2
√
π
e−p

2/4dp ≤ ε

2
,

since
∫
|p|<δ/

√
t

1
2
√
π
e−p

2/4dp ≤
∫∞
−∞

1
2
√
π
e−p

2/4dp = 1. The first integral can also be bounded using the

boundedness of φ. If we take C to be the constant such that |φ(x)| ≤ C for all x ∈ R (which exists
since φ is bounded), then∣∣∣∣∣

∫
|p|≥δ/

√
t

1

2
√
π
e−p

2/4(φ(p
√
t− x)− φ(x))dp

∣∣∣∣∣ ≤ 2C

∫
|p|≥δ/

√
t

1

2
√
π
e−p

2/4dp.

We can make the last integral less than ε/2 since the last integral is just the ‘tails’ of a convergent
integral, so will small for sufficiently small t. Thus we have proved u(x, t)→ φ(x) as t→ 0.
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7.4 A comparison of the wave and heat equations

We saw in Section 6.2 that the wave equation transmitted information at speed at most c. The data
that affected the solution at a given point (x, t) depended only on the data within the domain of
dependence of (x, t). This made sense given the physical motivation for studying the equation.

At first sight it would be reasonable to expect the same of the heat equation. Heat can surely only
flow from one place to another at a finite speed. However, a closer look at formula (7.3) shows this is
not the case.

Consider (7.2) with data φ given by

φ(x) =

{
1− |x| for |x| < 1;
0 for |x| ≥ 1.

Formula (7.3) gives a solution to (7.2). Since S is positive it is clear that the solution u(x, t) will also
be positive for all x ∈ R and t > 0. Physically this says that the initial heat, which was localised to
|x| < 1, has travelled an arbitrarily large distance in an arbitrarily small time. Consequently we do not
have the finite speed of propagation we saw for wave equation in the heat equation.

Theorem 7.5 shows that with just bounded and continuous data φ the solution to the heat equation
(7.2) will be infinitely differentiable for t > 0. This is clearly not the case for the wave equation, as
we can see from D’Alemberts formula (6.3). Thus it is reasonable to say that the heat equation is
smoothing, but the wave equation is not.

In Table 1 we compare the properties of solutions to the two equations.

Property Wave equation Heat equation

Speed of propogation Finite Infinite
Smoothing No Yes
Supports a maximum principle No Yes
Energy Conserved Decays
Time reversable Yes No

Table 1: Properties of the wave and heat equations.

7.5 The heat equation on a bounded interval

We will conclude our investigation of the heat equation by considering solutions defined on a bounded
interval. More precisely, we want to find u : [0, `]× [0,∞)→ R such that

∂tu(x, t)− ∂xxu(x, t) = 0 for x ∈ (0, `) and t ∈ (0,∞);
u(x, 0) = φ(x) for x ∈ [0, `];
u(0, t) = 0 and u(`, t) = 0 for t > 0.

(7.4)

When we considered a similar domain for the wave equation we used ideas about reflection in order to
construct a solution. Such a method would work well here, but we will try another method, separation
of variables, which we have already applied to Laplace’s equation.

Suppose that a solution to (7.4) can be written in the form

u(x, t) = X(x)T (t).

Substututing this into the heat equation, we see that

X(x)T ′(t)−X ′′(x)T (t) = 0

so, dividing by X(x)T (t), we see that
T ′(t)

T (t)
=
X ′′(x)

X(x)
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which must be independent of x and t, so equal to −λ, say. This gives us two ODEs to solve, the first
is

X ′′(x) + λX(x) = 0 for x ∈ [0, `], and X(0) = 0 and X(`) = 0 (7.5)

so a calculation shows that we must have λ = (kπ/`)2 and X(x) = A sin(kπx/`) for a constant A and
k ∈ N. The second equation is

T ′(t) + λT (t) = 0 for t > 0

and a calculation shows that we must have T (t) = Be−λt = Be−(kπ/`)2t for a constant B and k ∈ N.
We can take linear combinations of such solutions and so we find

u(x, t) =

∞∑
k=1

Ake
−(kπ/`)2t sin(kπx/`). (7.6)

If such a sum is convergent, it will solve the heat equation and the boundary conditions u(0, t) =
u(`, t) = 0. To ensure the initial condition is satisfied, we require

φ(x) =
∞∑
k=1

Ak sin(kπx/`).

Thus we require that φ can be expressed as a Fourier sine series. This is certainly possible if φ is
differentiable (although we will not prove this here). In this case, the coefficients are given by

Ak =
2

`

∫ `

0
φ(x) sin(kπx/`)dx.

8 Numerical analysis

In the preceding sections we have computed explicit formulae for solutions to PDEs in several particular
situations. However, in many situations it is not always possible to find such explicit formulae or, even
when it is possible, they may prove to be so complicated that they are not practical to use.

The aim of this section is to come up with a scheme that will produce an approximate solution
to a PDE together with its boundary/initial conditions by carrying out a finite number of arithmetic
operations. Such a scheme could then be implemented by a computer.

Care must be taking when devising such a scheme. We will have to check that any proposed scheme
does indeed approximate the solution we are looking for. Below we will see an example of what at first
appears to be a reasonable scheme that produces an ‘approximation’ which is very far from the true
solution.

Here we will illustrate the most important methods and techniques using simple equations as
examples.

8.1 Finite differences

The notion of a limit is central to the notion of a derivative. However, we cannot compute a limit
in a finite number of arithmetic operations, so we must find a suitable replacement. One naturally
possibility is that of finite differences.

Consider a function u : R → R of one variable. We first choose a collection of points xj from the
functions domain R. We can do this by first choosing a mesh size δx and then defining xj = j(δx).
We can then denote

uj = u(xj).

We have three standard approximations for the first derivative u′(xj).

The backward difference:
uj − uj−1

δx
.

The forward difference:
uj+1 − uj

δx
.

The centred difference:
uj+1 − uj−1

2δx
.

30



They are approximations in the sense that the difference between them and the true value of u′(xj) is
smaller the smaller δx is. This can be proved using the Taylor expansion for u. If u ∈ C4(R) then

u(x+ h) = u(x) + u′(x)h+
u′′(x)

2
h2 +

u′′′(x)

6
h3 +O(h4). (8.1)

Taking x = xj and h = −δx we see that

u′(xj) =
uj − uj−1

δx
+O(δx),

taking x = xj and h = δx we see

u′(xj) =
uj+1 − uj

δx
+O(δx),

and finally taking the difference of (8.1) with x = xj and h = δx, and x = xj and h = −δx we see that

u′(xj) =
uj+1 − uj−2

2(δx)
+O((δx)2).

Adding the same two expressions from (8.1) gives us

u′′(xj) =
uj+1 − 2uj + uj−1

(δx)2
+O((δx)2),

which motivates the following approximation for the second derivative u′′(xj):

The centred second difference:
uj+1 − 2uj + uj−1

(δx)2
.

We will of course be interested in functions of more than one variable. In particular if we have a
function u of two variables, we choose mesh sizes δx and δt for each variable. We write

u(j(δx), n(δt)) = unj .

Then we can approximate ∂tu(j(δx), n(δt)) by, for example, the forward difference

un+1
j − unj
δt

.

Similarly, the forward difference for ∂xu(j(δx), n(δt)) is

unj+1 − unj
δx

,

and so on.

8.2 Approximating solutions to the heat equation

8.2.1 An unstable scheme

We begin with what appears to be a simple problem. Let’s use the above approximations to produce
a scheme for finding approximate solutions to (7.4), the heat equation on a bounded domain with the
initial condition u(x, 0) = φ(x). We can use a forward difference to approximate ut and a centred
difference to approximate uxx. Then the PDE is replaced by the difference equation

un+1
j − unj
δt

=
unj+1 − 2unj + unj−1

(δx)2
. (8.2)
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Choose a small value of δx so that {xj}Jj=0 is a mesh over the interval [0, `] with xj = j(δx) and such

that xJ = ` and set δt = (δx)2. The equation becomes

un+1
j − unj = unj+1 − 2unj + unj−1

so
un+1
j = unj+1 − unj + unj−1. (8.3)

Now the initial data provides the values u0
j for all j = 0, 1, . . . , J , since we can impose that u0

j = φ(xj).
Furthermore, the boundary conditions lead us to set un0 = unJ = 0 for all n = 1, 2, . . . . Then (8.3) can
be used to obtain first u1

j for all j, then u2
j for all j and inductively all unj for all j and n.

Let’s implement this scheme with some simple initial data. For example, let’s suppose ` = 4,
δx = 0.5 and u0

4 = φ(2) = 1 and u0
j = φ(xj) = 0 for j 6= 4. Then we can compute the values unj as in

Table 2.

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

n = 0 0 0 0 0 1 0 0 0 0
n = 1 0 0 0 1 -1 1 0 0 0
n = 2 0 0 1 -2 3 -2 1 0 0
n = 3 0 1 -3 6 -7 6 -3 1 0
n = 4 0 -4 10 -16 19 -16 10 -4 0
n = 5 0 14 -30 45 -51 45 -30 14 0

Table 2: Some values of unj computed via (8.3) together with the initial and boundary conditions.

Take a look at Table 2. Does anything appear to have gone wrong? Observe that |φ(x)| ≤ 1 for
all x but we have computed u5

0 = −51. If we compare the solution {unj }j,n of our numerical scheme
(8.3) to what Theorem 7.1 says about solutions to the heat equation, we see that our scheme has not
produced something close to the true solution.

In the next section we will investigate what has gone wrong and fix it to produce a much better
scheme.

8.2.2 A stability condition

We will now investigate why our scheme (8.3) failed. The problem is not easy to spot, although there
are subtle clues to what has gone wrong in the form of (8.3). Looking at Table 2, we see that the
values of unj oscillate between positive and negative values; this property originates in the fact that

(8.3) contains negative coefficients. Let us return to our derivation of (8.3). Above we set δt = (δx)2

without much thought, but let’s repeat the calculation without this assumption. This time we set

s =
δt

(δx)2
.

Substituting this in (8.2) we obtain

un+1
j = (unj+1 + unj−1)s+ (1− 2s)unj (8.4)

To investigate the stability of (8.4), let’s further investigate its solution. We can consider the scheme
(8.4) together with the initial condition u0

j = φ(xj) for all j = 1, 2, . . . , J and boundary conditions
un0 = unJ = 0 for all n = 1, 2, . . . . It is not too hard to see that this determines unique values for all unj
for j = 1, 2, . . . , J and n = 1, 2, . . . . Let’s now show that these values can be decomposed as

unj = XjTn.

This anzats is the discrete form of separation of variables, that we employed in Section 7.5 for the
actual heat equation. Given the method worked for the actual equation, there’s good reason to hope
it will work for the discrete approximation (8.2). Substituting this anzats in (8.4), we obtain

Tn+1

Tn
= 1− 2s+ s

Xj+1 +Xj−1

Xj
. (8.5)
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We argue as usual that both sides must be a constant ξ independent of j and n. Therefore, Tn+1 = ξTn
and so, by induction,

Tn = ξnT0.

At this point we can see that if our numerical approximation of a solution to the heat equation is not
going to grow as n(δx) = t → ∞, which would contradict the maximum principle (see Theorem 7.1),
then we require |ξ| ≤ 1. However, to determine what ξ is we must look at the right hand side of (8.5).

We have

s
Xj+1 +Xj−1

Xj
+ 1− 2s = ξ. (8.6)

To find a solution of this, we guess that because when we solved the heat equation in Section 7.5 the
corresponding equation (7.5) was a second order ODE, this should be a discrete form of a second order
ODE. Consequently, it is reasonable to guess solutions to (8.6) are of the form

Xj = A cos(jθ) +B sin(jθ),

for constants A, B and θ. The boundary condition un0 = 0 for all n = 1, 2, . . . implies A = 0 and we are
free to choose B = 1 as we can absorb any constant in Tn. The condition unJ = 0 for all n = 1, 2, . . .
implies sin(Jθ) = 0 and so Jθ = kπ for some fixed k ∈ N. But we know that J = `/δx, so θ = kπδx/`
and

Xj = sin(jkπ(δx)/`).

Substituting this in (8.6) we have

s
sin((j + 1)kπ(δx)/`) + sin((j − 1)kπ(δx)/`)

sin(jkπ(δx)/`)
+ 1− 2s = ξ

which simplifies to
ξ = ξ(k) = 1− 2s(1− cos(kπ(δx)/`)). (8.7)

Thus, it is easy to see that 1− 4s ≤ |ξ| ≤ 1, so we can only guarantee that |ξ(k)| ≤ 1 if

δt

(δx)2
= s ≤ 1

2
. (8.8)

The condition (8.8) is a stability condition for the numerical scheme (8.4) — it ensures the values we
obtain will not oscillate widely as in Section 8.2.1, but we have not said anything about how close our
approximation is to the real solution.

However, we can give some justification that this is close to the true solution for small δx. Our
calculations above show that the solution to the difference scheme (8.4) together with the boundary
conditions is

unj =
∞∑

k=−∞
Bkξ(k)n sin(jkπ(δx)/`)

Comparing this to (7.6), we see that we need to justify that, for n(δt) = t fixed,

ξ(k)n → e−(kπ/`)2t

as δt→ 0 and n→∞. Expanding (8.7) as a Taylor series justifies the approximation

ξ(k) ≈ 1− s
(

(kπ(δx)/`)2

2!

)
= 1−

(
kπ

`

)2

δt.

Raising this to the n-th power we have(
1−

(
kπ

`

)2

δt

)n
=

(
1−

(
kπ

`

)2 nδt

n

)n
=

(
1−

(
kπ

`

)2 t

n

)n
≈ e−(kπ/`)2t,

as desired. Of course, this is far from a rigorous proof that our numerical scheme approximates the
solution, but it certainly provides some encouraging evidence.
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8.3 The finite element method

In the previous two sections we found a numerical scheme to approximate the solution of the heat
equation by replacing derivatives with finite differences. It seemed a natural approach, although, as we
saw, it also presented some problems. There are, however, other approaches that can also be taken.
Once such alternative is called the finite element method. The method makes use of linear algebra to
approximate solutions.

We will study the Dirichlet problem for Poisson’s equation:{
−∆u = f in Ω, and
u = 0 on ∂Ω.

(8.9)

First we shall find a convenient way to rewrite the boundary value problem. Let us denote the set of all
functions v ∈ C2(Ω) which also satisfies the boundary condition v = 0 on ∂Ω by C2(Ω). If we multiply
both side of the PDE in (8.9) by an arbitrary function v ∈ C2

0 (Ω), integrate over Ω and apply Green’s
first identity (5.8), we obtain∫

Ω
∇u(x) · ∇v(x)dx =

∫
Ω

(−∆u)(x)v(x)dx =

∫
Ω
f(x)v(x)dx.

Interestingly, if we were given a function u ∈ C2
0 (Ω) such that∫

Ω
∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx. (8.10)

for all functions v ∈ C2
0 (Ω), then we could apply Green’s first identity again, to conclude∫

Ω
(−∆u)(x)v(x)dx =

∫
Ω
f(x)v(x)dx.

Since v was arbitrary, from here we could conclude that −∆u = f . Thus, we see that if u ∈ C2
0 (Ω),

then (8.9) holds if and only if (8.10) holds for all v ∈ C2
0 (Ω). Observe that the boundary condition in

(8.9) holds by definition if u ∈ C2
0 (Ω).

The reformulation (8.10) is useful, as it emphasises the role of the vector space C2
0 (Ω). But how does

this help us find a numerical solution to (8.9)? The idea is to replace C2
0 (Ω) with a finite dimensional

vector subspace V of C2
0 (Ω). The task then becomes to uV ∈ V such that∫

Ω
∇uV (x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx (8.11)

holds for all v ∈ V . If {v1, v2, . . . , vN} is a basis for V , then we can write

uV =

N∑
i=1

αivi,

N∑
i=1

αi

∫
Ω
∇vi(x) · ∇vj(x)dx =

∫
Ω
f(x)vj(x)dx

for each j = 1, 2, . . . , N . Writing fk =
∫

Ω f(x)vk(x)dx and mij =
∫

Ω∇vi(x) · ∇vj(x)dx, this is just the
system of linear equations,

N∑
i=1

mijαi = fj ,

which can be easily solved by inverting the matrix (mij)ij .
In order to implement these ideas we need to find an explicit finite dimensional vector space V and

associated basis. One way to do this is to find a triangulation of Ω. This involves approximating Ω
by a union of triangles (see Figure 7). Enumerate the vertices of the triangulation which lie in the
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Figure 7: A triangulation of the set Ω with interior vertices labelled x1,x2,x3,x4,x5.

interior of Ω by x1,x2, . . . ,xN and then, for each k = 1, 2, . . . , N , define a function vk which is equal
to one at xk, equal to zero at all other vertices, and extended to be linear in each triangle. Thus,
each vk is piecewise linear. It is also easy to check that {v1, v2, . . . , vN} is linear independent, and so
{v1, v2, . . . , vN} is a basis for its linear span, which we take as our finite dimensional vector space V .

Strictly speaking, V is not a subspace of C2
0 (Ω), but nevertheless it works well.(Explaining why

this is okay is beyond the scope of this course, but the idea is that the reformulation (8.10) dispenses
with the need to worry about second-order derivatives, and as distributions the first-order derivatives
of elements in V are well-behaved.)
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