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Theorem 1. Suppose that f : [a, b] × [c, d] → R and ∂tf are continuous functions on [a, b]× [c, d].
Then

d

dt

(∫ b

a

f(x, t)dx

)
=

∫ b

a

∂tf(x, t)dx

for t ∈ [c, d].

To prove this we first need to recall some things from Calculus. A function f : D → R is said to
be continuous if for each x ∈ D and ε > 0, there exists a δ = δ(x, ε) > 0 such that

if y ∈ D is such that |y − x| < δ then |f(y)− f(x)| < ε. (1)

A function f : D → R is said to be uniformly continuous if for each ε > 0, there exists a δ = δ(ε) > 0
such that

if x, y ∈ D are such that |y − x| < δ then |f(y)− f(x)| < ε.

The difference between continuity and uniform continuity is that the δ in the definition of continuity
may depend on both x and ε, but in uniform continuity it depends only on ε and not on x.

Lemma. If f : C → R is a continuous function on a compact set C, then f is uniformly continuous.

Proof. Fix ε > 0. We know that for each x ∈ C, there exists a δ = δ(x, ε) > 0 such that (1) holds.
Our task is for find a δ for which (1) holds for all x ∈ C.

Implication (1) can be rewritten as

f(B(x, δ(x))) ⊂ B(f(x), ε). (2)

The collection of balls {B(x, δ(x))}x∈C is an open cover of C and equally so is {B(x, δ(x)/2)}x∈C .
Thus, since C is compact, we can find a finite collection of xi ∈ D, i = 1, 2, . . . , N such that
{B(xi, δ(xi)/2)}Ni=1 is also an open cover. Define δ = mini=1,2,...,N δ(xi)/2. We will now show that
this δ is the number we are seeking.

Then take arbitrary x, y ∈ D which are such that |x − y| < δ. Since {B(xi, δ(xi)/2)}Ni=1 is a
cover of D, there must be at least one k ∈ {1, 2, . . . , N} such that x ∈ B(xk, δ(xk)/2). Consequently

|y − xk| ≤ |y − x|+ |x− xk| < δ + δ(xk)/2 ≤ δ(xk)/2 + δ(xk)/2 = δ(xk),

so both x and y lie in B(xi, δ(xi)). By (2), we then know that |f(y) − f(x)| ≤ |f(y) − f(xk)| +
|f(x)− f(xk)| < 2ε, as required.

Proof of Theorem 1. By the linearity of the integral

1

h

(∫ b

a

f(x, t+ h)dx−
∫ b

a

f(x, t)dx

)
=

∫ b

a

f(x, t+ h)− f(x, t)

h
dx.

The limit of the expression on the left as h→ 0 is

d

dt

(∫ b

a

f(x, t)dx

)
,

so we would like to show that the limit of the right is∫ b

a

∂2f(x, t)dx.

By the mean value theorem, we know that for each x, t and h there exists a ξ = ξ(x, t, h), which is
between t and t+ h, such that

f(x, t+ h)− f(x, t)

h
= ∂2f(x, ξ).



Since ∂2f is continuous on the compact set [a, b]× [c, d] is it uniformly continuous. This means for
a given ε > 0 there exists a δ = δ(ε) > 0 such that (for any s, t ∈ [c, d])

if s, t ∈ [c, d] are such that |s− t| < δ then |∂2f(x, s)− ∂2f(x, t)| < ε/(b− a).

Thus, for a given ε > 0 we take δ > 0 as above and consider h such that |h| < δ. Then we know
that |ξ(x, t, h)− t| ≤ |(t+ h)− t| = |h| < δ and∣∣∣∣∣

∫ b

a

f(x, t+ h)− f(x, t)

h
dx−

∫ b

a

∂2f(x, t)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

∂2f(x, ξ(x, t, h))− ∂2f(x, t)dx

∣∣∣∣∣
≤
∫ b

a

|∂2f(x, ξ(x, t, h))− ∂2f(x, t)|dx

≤
∫ b

a

ε/(b− a)dx = ε.

Since ε was arbitrary this proves that∫ b

a

f(x, t+ h)− f(x, t)

h
dx→

∫ b

a

∂2f(x, t)dx

as h→ 0.

If f is defined on [a,∞)× [c, d] we can consider the improper Riemann integrals∫ ∞
a

f(x, t)dx (3)

for each t ∈ [c, d]. Recall that we say such an integral is convergent if the limit

lim
R→∞

∫ R

a

f(x, t)dx.

exists and is finite. Suppose now the integral (3) is convergent for each t and let us denote the limit
by `(t). This means that for each ε > 0 there exists a N = N(t, ε) > 0 such that

if R > N then
∣∣∣∫ R

a
f(x, t)dx− `(t)

∣∣∣ < ε.

We say the integral converges uniformly in t if N depends only on ε and not on t (so we can write
N = N(ε)).

Theorem 2. Suppose that f : [a,∞)× [c, d]→ R and ∂tf are continuous functions on [a,∞)× [c, d]
and the integrals

∫∞
a
|f(x, t)|dx and

∫∞
a
|∂tf(x, t)|dx converge uniformly in t ∈ [c, d]. Then

d

dt

(∫ ∞
a

f(x, t)dx

)
=

∫ ∞
a

∂tf(x, t)dx

for t ∈ [c, d].

Proof. Define

In(t) =

∫ n

a

f(x, t)dx

for n ∈ N. By Theorem 1 we know that each In is differentiable on [c, d]. Applying the Mean Value
Theorem to In − Im, we have

(In(t)− Im(t))− (In(s)− Im(s)) = (t− s)(I ′n(ξ)− I ′m(ξ))

for some ξ = ξ(s, t) between s and t. This implies

In(t)− In(s)

t− s
− Im(t)− Im(s)

t− s
= I ′n(ξ)− I ′m(ξ) =

∫ n

m

∂2f(x, t)dx,



where in the last inequality we used Theorem 1. Since the integral
∫∞
a
∂tf(x, t)dx converges uni-

formly in t, this means that for a given ε > 0 there exists an N1 = N1(ε) > 0 such that if n,m ≥ N1

then ∣∣∣∣In(t)− In(s)

t− s
− Im(t)− Im(s)

t− s

∣∣∣∣ < ε.

Letting m→∞ we see that ∣∣∣∣In(t)− In(s)

t− s
− I(t)− I(s)

t− s

∣∣∣∣ < ε. (4)

for n ≥ N1, where

I(t) = lim
m→∞

Im(t) =

∫ ∞
a

f(x, t)dx.

By the triangle inequality∣∣∣∣I(t)− I(s)

t− s
−
∫ ∞
a

∂tf(x, t)dx

∣∣∣∣
≤
∣∣∣∣I(t)− I(s)

t− s
− In(t)− In(s)

t− s

∣∣∣∣+

∣∣∣∣In(t)− In(s)

t− s
−
∫ n

a

∂tf(x, t)dx

∣∣∣∣
+

∣∣∣∣∫ n

a

∂tf(x, t)dx−
∫ ∞
a

∂tf(x, t)dx

∣∣∣∣
(5)

The first term on the right-hand side of (5) is less than ε if n ≥ N1 by (4). By Theorem 1 there
exists a δ > 0 such that the second term on the right-hand side of (5) will be less than ε if |t−s| < δ.
The third term on the right-hand side of (5) is equal to∣∣∣∣∫ ∞

n

∂tf(x, t)dx

∣∣∣∣ ≤ ∫ ∞
n

|∂tf(x, t)|dx,

and since the integral of
∫∞
a
|∂tf(x, t)|dx is convergent uniformly in t, there exists an N2 > 0 such

that
∫∞
n
|∂tf(x, t)|dx is less than ε if n ≥ N1.

In conclusion, for a given ε > 0 we can take δ = δ(ε) > 0 as above and apply (5) with n >
max{N1, N2}, then

if |t− s| < δ we can conclude that
∣∣∣ I(t)−I(s)t−s −

∫∞
a
∂tf(x, t)dx

∣∣∣ ≤ 3ε,

which proves the theorem.


