Partial Differential Equations (TATA27)
Spring Semester 2015
Derivatives of Integrals

Theorem 1. Suppose that f: [a,b] X [¢,d] = R and d;f are continuous functions on [a,b] X [c,d].
Then
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To prove this we first need to recall some things from Calculus. A function f: D — R is said to
be continuous if for each x € D and € > 0, there exists a § = §(z, ) > 0 such that

fort € [c,d].

if y € D is such that |y — z| < § then |f(y) — f(z)| < e. (1)

A function f: D — R is said to be uniformly continuous if for each € > 0, there exists a = §(g) > 0
such that
if x,y € D are such that |y — x| < ¢ then |f(y) — f(z)| <e.

The difference between continuity and uniform continuity is that the ¢ in the definition of continuity
may depend on both x and ¢, but in uniform continuity it depends only on ¢ and not on z.

Lemma. If f: C'— R is a continuous function on a compact set C, then f is uniformly continuous.

Proof. Fix € > 0. We know that for each x € C, there exists a 6 = d(z,e) > 0 such that (1) holds.
Our task is for find a ¢ for which (1) holds for all z € C.
Implication (1) can be rewritten as

f(B(z,6(x))) € B(f(x),¢). (2)
The collection of balls {B(x,d(x))}zcc is an open cover of C and equally so is {B(z,d(x)/2)}zec-
Thus, since C' is compact, we can find a finite collection of x; € D, ¢ = 1,2,..., N such that

{B(xi,6(z;)/2)}Y, is also an open cover. Define § = min;—1 2.y &(z;)/2. We will now show that
this § is the number we are seeking.
Then take arbitrary x,y € D which are such that |z — y| < . Since {B(z;,d(x;)/2)}Y, is a
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cover of D, there must be at least one k € {1,2,..., N} such that z € B(zy, §(x)/2). Consequently
ly — x| < |y —z|+ |z — x| <6 +6(zk)/2 < 0(xk)/2 4 6(ak)/2 = 6(zk),

so both z and y lie in B(x;,d(x;)). By (2), we then know that |f(y) — f(z)| < |f(y) — f(zr)| +
|f(z) — f(zr)| < 2¢, as required. -

Proof of Theorem 1. By the linearity of the integral
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The limit of the expression on the left as h — 0 is

b
i( / f(x,wdx),

so we would like to show that the limit of the right is

b
/ Oa f (z,t)dz.

By the mean value theorem, we know that for each x, t and h there exists a £ = £(x, ¢, h), which is
between t and t + h, such that

flx,t+h)— f(z,t)
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Since Oy f is continuous on the compact set [a, b] X [¢, d] is it uniformly continuous. This means for
a given € > 0 there exists a = 0(g) > 0 such that (for any s,t € [c,d])

if s,t € [c, d] are such that |s —t| < d then |02f(z,s) — 02 f (x,t)] < e/(b— a).

Thus, for a given € > 0 we take § > 0 as above and consider h such that |h| < §. Then we know
that |£(z,t,h) —t| < |(t+h) —t| = |h| < J and
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Since € was arbitrary this proves that
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as h — 0. O

If f is defined on [a, 00) X [¢,d] we can consider the improper Riemann integrals
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for each t € [c, d]. Recall that we say such an integral is convergent if the limit

R
lim / f(z, t)dx.
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exists and is finite. Suppose now the integral (3) is convergent for each ¢ and let us denote the limit
by ¢(t). This means that for each € > 0 there exists a N = N(¢,¢) > 0 such that

if R > N then ‘faRf(x,t)dx —t)| <e.

We say the integral converges uniformly in t if N depends only on & and not on t (so we can write
N = N(g)).

Theorem 2. Suppose that f: [a,00) X [c,d] = R and O,f are continuous functions on [a,c0) X [c, d]
and the integrals [ |f(x,t)|dx and [°|0:f(x,t)|dx converge uniformly in t € [c,d]. Then

% (/OO f(x,t)dx) — /:o 0, f (x,1)dx

fort € [c,d].
Proof. Define .
L(t) = / f(a tydx

for n € N. By Theorem 1 we know that each I,, is differentiable on [c,d]. Applying the Mean Value
Theorem to I,, — I,,,, we have

(In(t) = Im () = (In(s) = Im(s)) = (t = $)(L,,(&) — I;,(£))

for some & = £(s,t) between s and ¢. This implies
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where in the last inequality we used Theorem 1. Since the integral faoo O f (z,t)dz converges uni-
formly in ¢, this means that for a given € > 0 there exists an N; = Ny(g) > 0 such that if n,m > Ny

then s
n(t) — In(s) -~ I (t) — I (s) <e
t—s t—s
Letting m — oo we see that
L,(t) — I, I(t) -1
(t) = In(s) 1) = I(s)| _ _ )
t—s t—s

for n > Np, where

I(t) = lim I, / f(z,t)d

m—r o0

By the triangle inequality
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The first term on the right-hand side of (5) is less than ¢ if n > Ny by (4). By Theorem 1 there
exists a § > 0 such that the second term on the right-hand side of (5) will be less than ¢ if [t —s| < 6.
The third term on the right-hand side of (5) is equal to

/00 O f(z,t)dz| < /00 |0 f (,t)|d,

and since the integral of f 10 f (z,t)|dz is convergent uniformly in ¢, there exists an Ny > 0 such
that [ |9, f(x,t)|dz is less than € if n > Ny,

In conclusion, for a given € > 0 we can take § = d(¢) > 0 as above and apply (5) with n >
max{Ny, Na}, then
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if |t — s| < ¢ we can conclude that ‘M [70uf (@, t)da| < 3e,

which proves the theorem. O



