Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 9

9.1 (a) See Figure 1.

Figure 1: Here is a picture of the set D.

(b) The motivation behind why the wave equation does not satisfy a maximum principle is
that wave profiles travelling in opposite directions may collide with one another and thus
be larger in value that the initial data — in physics this is called constructive interference.
We want to take this idea and apply it to construct a specific example.

We want our solution to be two waves which travel towards each other. Let ¢ € C*(R)
be a function such that |¢(x)| < 1 and

[ 0 forxe (—00,0)U(£/2,00),
o) = { 1 for x € (£/6,2¢/6).

Then set ¢4 (z) = ¢(z) and ¢_(z) = ¢p(x — £/2). Clearly u(z,t) = ¢4 (x —t) + d_(z +t)
solves the heat equation, so to check whether or not it solves (1) we must check the
initial and boundary conditions. We have u(z,0) = ¢4 (z) + ¢_(z) and Owu(z,t) =
—¢', (x) + ¢'_(x), so we choose

g9(x) = ¢4 () + ¢—(z) and h(z) =—¢ (z) + ¢"(2). #)

We also have u(0,t) = ¢4 (—t) + ¢_(t), which is zero provided t — £/2 <0 < t < £/2.
Finally, u(¢,t) = ¢ (£ — t) + ¢_ (£ + t), which is zero provided £ —t > £/2 <— t < £/2.
Therefore, u solves (1) with g and h as in (1) and T = ¢/2.

9.2 (a) Theorem. Suppose 2 C R"™ is an open bounded connected set and T > 0. Let
u: Q2 x [0,7] — R be a continuous function which is also a solution to the heat equation
Opu(x,t) — Au(x,t) = 0 for (x,t) € Q x (0,7]. Then the minimum value of u is attained
at a point (x,t) € Q x [0,T] such that either ¢t = 0 or x € 9.
Proof. Observe that if u satisfies the hypothesis of Theorem 7.1, then so does —u. Since
the maximum value of —u is the minimum value of u we can apply Theorem 7.1 to —u
and conclude that u attains its minimum value at a point (x,t) € Q x [0,T] such that
either t = 0 or x € 0.

(b) Suppose we have two solutions u; and ug to (7.1). Then v = ug — u; solves

Owv(x,t) — Av(x,t) =0 for x € Q and ¢t € (0,T];
u(x,0) =0 for x € Q; and
u(y,t) =0 fory € 0Q and ¢ € (0,77.

Theorem 7.1 and 9.2(a) say that

max  |v(z,t)] = max|v(z,t)]
(x,t)€QX[0,T] D

where D = (2 x {0}) U (Q x (0,T]). But clearly maxp |v(z,t)] = 0, so v = 0 and so
Uy = ug.



(c) Now the difference us — u; = v solves

Ov(x,t) — Av(x,t) =0 forx € Q and ¢t € (0,77;
u(x,0) = da(x) — ¢1(x) for x € ; and
U(y,t) = gQ(th) - gl(y7t) for y € O and t € (Oa T]

and again Theorem 7.1 and 9.2(a) say

max  |ue(x,t) —ui(x,t)] = max |v(z,t)] = max|v(z,t)]
x€Q,t€[0,T] (x,t)€Qx[0,T] D
But
max\fu(ac t)] < max|v(x,t)| + sup lv(x, )]
xEQN x€00,t€(0,T]
= max|[dy(x) —d1(x)[+  sup [g2(x,t) — g1(x,1)[-
xS x€00,t€(0,T]

Use Theorem 7.1 and 9.2(a) to prove the following stability result: If u; and us both
solve (7.1) with the initial conditions ¢; and ¢ and boundary conditions g; and go,

respectively, then

max |uy(X, 1) —ui(x,1)| <max[dy(x) —d1(x)| +  sup - [ga(x, 1) — g1(x, 7).

x€Q,te[0,T] x€Q x€90,t€(0,T
Putting these estimates together gives us the required stability result.

9.3 We have

I2

* > 1 —x? /4t 1 —y? /4t
e —e dzxd
/ / 2\F 2/t Y
:/ / 7(95 Ty )/4tdmdy
27 2/4
e " drde
/ / 47Tt "

_/ 677"2/4th |

Therefore I = 1 and, since x — S(z,t) is even [;° S(z,t)dz = 1/2.

=1

0

9.4 (a) Recall the definitions from Section 1.2. We need to check that the operator 9; —

linear operator. Take two functions u and v and two constants a and 3. Then,

(0 — D)o+ Bv) = (O — Y On,a) (0 + Bv)

P
= Bt Bo) = (3 By, + )
P
= Oy(au + Bv) — Zn: Oy, (U + V)
i
= (adyu + Bw) — zn: Oy, (00w + By, v)
o
= (adyu + Bov) — Zn:(aawju + 80z,2,v)

<
Il
—_

n n
=a | dwu— Z Op,e;u | + B | O — Z Op,z;V
j=1 j=1

Ais a

Thus L(au + fv) = alu + BLv where L = (au + [v), so the operator L is linear and

hence the heat equation is linear.



(b)

9.5 (a)

We know that dou — 9114 = 0. By the chain rule

Ohu(vax, at) = a(du)(Vaz, at),
Opu(vaz,at) = /a(Ou)(Vaz,at) and
Opru(vax, at) = a(Ou)(vVax, at).

Thus

Ou(vax, at) — Oppu(vax, at) = a(deu)(vVaz,at) — a(dr1u)(Vazx, at)
= a((Ou)(Vaz, at) — (011u) (Vax, at))
= a((O2u) — (O11u))(Vaz, at) = 0.

By applying the chain rule, we see that
x
dru(z,t) = —ng(x/@\/i))
1 /
Opu(z,t) = 2729 (z/(2vt)) and

Oneu(e,t) = 19" (2/ (V).

Therefore,
0= i 1) — Deula, 1) = L3730/ (2/ (VD) — 10" &/ (2VA),
and hence r
0= 227\/%9'(56/(2\/{5)) +9"(x/(2v1))

0=2pg'(p) + 9" (p).

Set h = ¢’, then we can solve
h'(p) + 2ph(p) = 0

by multiplying by the integrating factor P’

0= ePQh’(p) + 2pep2h(p) = di; (epzh(p)) .

Hence e”’ h(p) = A and h(p) = Ae=P". Tt follows that

P 2
g(p)=/ Ae"dg+ B
0

and hence

s/VE)
u(z,t) = / Ae~9dg+ B
0

The initial condition tells us that

. 1 ifx>0;
hmu(%ﬂ‘b(@{ 0 ifz<O0.

t—0

But

fOOOAe—qqu—i—B if x > 0; :{ ATﬁ+B if x > 0;
2

lim u(z,t) = { 102
i u(@,?) {fo Ae~Tdg+ B ifz <0. ~AT LB ifz <.

Solving the two equations (v/7/2)A+ B =1 and —(/7/2)A+ B =0 gives A = 1//7
and B =1/2, so

1 z/(2V1) ) 1
u(a:,t):ﬁ/o e dq—i—§.



(c) Observe that, by the First Fundamental Theorem of Calculus and the chain rule,

1
2/t

We know that the heat kernel solves the heat equation. Moreover, looking at the graph
of z — S(z,t) for smaller and smaller ¢ we might guess that « — S(x,t) tends towards
a Dirac delta distribution as ¢ — 0. This means that it appears that S solves (7.2) with
initial data being the Dirac delta distribution. While our initial data ¢ is not differentiable
in the usual sense, we can differentiate it in the sense of distributions and its derivative
is the Dirac delta distribution. Thus it makes sense that dyu(z,t) = S(z,t) since they
both appear to solve the same initial value problems for the heat equations.

Ogu(x,t) = e/ = S(x,t).



