Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions 8

8.1 We recall that in lectures we claimed
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is a solution to (6.10).

(a) We compute that if ¢(z,y,z) = 0 and ¢(z,y,2) = 1 for all (z,y,2) € R?, then according
to (6.14)
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(b) Equally, we compute that if ¢(x) = 0 and ¥(x) = y for all x = (z,y,2) € R3, then
according to (6.14)
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where we write y = (u,v,w) € R3. To simplify the integral above we observe that y + v
is harmonic, so Theorem 5.6 gives that
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so u(x,t) = ty for x = (z,y,2) € R3.
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with ¢(z,y) = 0 and 9 (z,y) = A for all (z,y) € R? reads

8.2 The formula

(6.16)
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8.3 We apply the change of variables y = rz to obtain
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where r = |x|. Therefore, recalling that the Laplacian in spherical coordinates is
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we see that
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Writing (s, ¢, 1) as the spherical coordinates of z, we have
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Since we are integrating on the unit sphere, s = 1, and so
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Moreover
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since u(r, ¢, 0) is 2r-periodic in ¢ and sin0 = sin7 = 0. Combining this with (1) and (2) we
find that Au = Au.

8.4 Since goga and hoqq are odd, we can write (6.8) as
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when 0 < z < ct.

8.5 (a) We can rewrite the wave equation
O2v(r,t) — 2v(r,t) =0 forr € Rand ¢t >0 (3)

as the system
Opu(x,t) + Ozu(z,t) =0
Opv(z,t) — Opv(x,t) = u(z,t)

Via the method of characteristics, we see that a general solution to the first equation is
u(r,t) = h(r —t). We observe that v(r,t) = g(r — t) is a solution to the second equation
with u(r,t) = h(r — t) provided —2¢'(r — t) = h(r — t). Since h was arbitrary, this says
nothing more that g is differentiable. To find a general solution to the second equation
we must add an arbitrary solution to the homogeneous equation d;v(z,t) — d,v(z,t) = 0,
which again via the method of characteristics can be seen to be v(r,t) = f(r —t). Thus
a general solution to (3) is

o(r,t) = f(r—t) +g(r+1) (4)

for arbitrary differentiable functions f: R -+ R and g: R — R.



(b)

We can write a radial solution u as u(x,t) = ug(|x/,t) for some ug: [0,0)? — R. Fur-
thermore ug(r,t) = Up(r, t) for all r,¢ > 0, where Ug is the spherical mean of u about the
origin. Therefore ug = g satisfies (6.12) (with x = 0). By the same argument as in the
notes,

v(r,t) == rug(r,t) (5)

satisfies the wave equation (6.13) and v(0,t) = 0. Therefore v has the form (4) for some
f and g. In order to ensure v(0,t) = 0 we choose f and g so that r — v(r,t) is odd. One
way to do this is by choosing f and g so that f(—x) = —g(z) for all x € R. By (5) we

have
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u(x,t) = uo(|x],t) = : (%)
At first sight it appears that (%) may develop a singularity at the origin, as we divide by
|x|. However the requirement that v(0,t) = 0 above has the potential to mitigates this
problem.

It is instructive to test a few sensible examples of f and g to see if it is possible to create
a singularity at the origin. Remember we must make sure r — f(r —t) 4+ g(r +t) is odd!
You should find your attempts to create a singularity are always thwarted.

Try, for example, g(s) = s™ for s > 0 and m = 2, 3.

This is a hard problem to answer rigorously, but is a nice exercise to play with to inves-
tigate what the truth might be.

Section 2.4.1 of Evans Partial Differetial Equations makes concrete statements about the
regularity of solutions to the wave equation. See Theorems 1 and 2 there. They state
that if the initial data is sufficiently smooth, then the v will be correspondingly smooth.
In broad terms there is no difference between one and three dimensions.



