
Partial Differential Equations (TATA27)
Spring Semester 2019

Solutions 8

8.1 We recall that in lectures we claimed

u(x, t) =
∂

∂t

(
1

4πt

∫
|y−x|=t

φ(y)dσ(y)

)
+

1

4πt

∫
|y−x|=t

ψ(y)dσ(y), (6.14)

is a solution to (6.10).

(a) We compute that if φ(x, y, z) = 0 and ψ(x, y, z) = 1 for all (x, y, z) ∈ R3, then according
to (6.14)

u(x, t) =
∂

∂t

(
1

4πt

∫
|y−x|=t

0 dσ(y)

)
+

1

4πt

∫
|y−x|=t

1 dσ(y)

= 0 +
4πt2

4πt
= t.

(b) Equally, we compute that if φ(x) = 0 and ψ(x) = y for all x = (x, y, z) ∈ R3, then
according to (6.14)

u(x, t) =
∂

∂t

(
1

4πt

∫
|y−x|=t

0 dσ(y)

)
+

1

4πt

∫
|y−x|=t

v dσ(y) = frac14πt

∫
|y−x|=t

v dσ(y)

where we write y = (u, v, w) ∈ R3. To simplify the integral above we observe that y 7→ v
is harmonic, so Theorem 5.6 gives that

1

4πt

∫
|y−x|=t

v dσ(y) = t

(
1

4πt2

∫
|y−x|=t

v dσ(y)

)
= ty,

so u(x, t) = ty for x = (x, y, z) ∈ R3.

8.2 The formula

u(x, y, t) =
∂

∂t

(
1

2π

∫
a2+b2≤t2

φ(a+ x, b+ y)√
t2 − a2 − b2

dadb

)
+

1

2π

∫
a2+b2≤t2

ψ(a+ x, b+ y)√
t2 − a2 − b2

dadb

(6.16)

with φ(x, y) = 0 and ψ(x, y) = A for all (x, y) ∈ R2 reads

u(x, y, t) =
1

2π

∫
a2+b2≤t2

A√
t2 − a2 − b2

dadb =
t2

2πt

∫
a2+b2≤1

A√
1− a2 − b2

dadb

=
1

2π

∫ 1

0

∫ 2π

0

A√
1− r2

rdθdr = t

∫ 1

0

Ar√
1− r2

dr = −At
√

1− r2
∣∣∣1
0

= At

8.3 We apply the change of variables y = rz to obtain

u(x) =
1

4πr2

∫
|y|=r

u(y)dσ(y) =
1

4π

∫
|z|=1

u(rz)dσ(z)

where r = |x|. Therefore, recalling that the Laplacian in spherical coordinates is

∆ = ∆(r,θ,φ) =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
,

we see that

∆u(x) =
1

4π

∫
|z|=1

∆(r,θ,φ)u(rz)dσ(z) =
1

4π

∫
|z|=1

(
∂2

∂r2
+

2

r

∂

∂r

)
u(rz)dσ(z). (1)



Writing (s, ϕ, ϑ) as the spherical coordinates of z, we have(
∂2

∂r2
+

2

r

∂

∂r

)
u(rz) =

(
∂2

∂r2
+

2

r

∂

∂r

)
u(rs, ϕ, ϑ) = s2

(
∂21u(rs, ϕ, ϑ) +

2

rs
∂1u(rs, ϕ, ϑ)

)
.

Since we are integrating on the unit sphere, s = 1, and so

1

4π

∫
|z|=1

(
∂2

∂r2
+

2

r

∂

∂r

)
u(rz)dσ(z)

=
1

4π

∫ 2π

0

∫ π

0

(
∂21u(rs, ϕ, ϑ) +

2

rs
∂1u(rs, ϕ, ϑ)

)
sinϑdϕdϑ

=
1

4π

∫ 2π

0

∫ π

0

(
∂2u(r, φ, θ)

∂r2
+

2

r

∂u(r, φ, θ)

∂r

)
sin θdφdθ

=
1

4πr2

∫
|y|=r

(
∂2

∂r2
+

2

r

∂

∂r

)
u(y)dσ(y).

(2)

Moreover

1

4πr2

∫
|y|=r

(
1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)
u(y)dσ(y)

=
1

4πr2

∫ 2π

0

∫ π

0

r2 sin θ

(
1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2

)
u(r, φ, θ) dφdθ

=
1

4πr2

∫ 2π

0

∫ π

0

(
∂

∂θ
sin θ

∂

∂θ
+

∂2

∂φ2

)
u(r, φ, θ) dφdθ = 0,

since u(r, φ, θ) is 2π-periodic in φ and sin 0 = sinπ = 0. Combining this with (1) and (2) we
find that ∆u = ∆u.

8.4 Since godd and hodd are odd, we can write (6.8) as

v(x, t) =
1

2
(godd(x+ ct) + godd(x− ct)) +

1

2c

∫ x+ct

x−ct
hodd(y)dy

=
1

2
(godd(ct+ x)− godd(ct− x)) +

1

2c

(∫ ct−x

x−ct
hodd(y)dy +

∫ ct+x

ct−x
hodd(y)dy

)
=

∂

∂t

(
1

2c

∫ ct+x

ct−x
godd(y)dy

)
+

1

2c

∫ ct+x

ct−x
hodd(y)dy

when 0 ≤ x ≤ ct.

8.5 (a) We can rewrite the wave equation

∂2t v(r, t)− ∂2rv(r, t) = 0 for r ∈ R and t > 0 (3)

as the system {
∂tu(x, t) + ∂xu(x, t) = 0
∂tv(x, t)− ∂xv(x, t) = u(x, t)

Via the method of characteristics, we see that a general solution to the first equation is
u(r, t) = h(r − t). We observe that v(r, t) = g(r − t) is a solution to the second equation
with u(r, t) = h(r − t) provided −2g′(r − t) = h(r − t). Since h was arbitrary, this says
nothing more that g is differentiable. To find a general solution to the second equation
we must add an arbitrary solution to the homogeneous equation ∂tv(x, t)− ∂xv(x, t) = 0,
which again via the method of characteristics can be seen to be v(r, t) = f(r − t). Thus
a general solution to (3) is

v(r, t) = f(r − t) + g(r + t) (4)

for arbitrary differentiable functions f : R→ R and g : R→ R.



(b) We can write a radial solution u as u(x, t) = u0(|x|, t) for some u0 : [0,∞)2 → R. Fur-
thermore u0(r, t) = u0(r, t) for all r, t > 0, where u0 is the spherical mean of u about the
origin. Therefore u0 = u0 satisfies (6.12) (with x = 0). By the same argument as in the
notes,

v(r, t) := ru0(r, t) (5)

satisfies the wave equation (6.13) and v(0, t) = 0. Therefore v has the form (4) for some
f and g. In order to ensure v(0, t) = 0 we choose f and g so that r 7→ v(r, t) is odd. One
way to do this is by choosing f and g so that f(−x) = −g(x) for all x ∈ R. By (5) we
have

u(x, t) = u0(|x|, t) =
f(|x| − t) + g(|x|+ t)

|x|
. (∗)

(c) At first sight it appears that (∗) may develop a singularity at the origin, as we divide by
|x|. However the requirement that v(0, t) = 0 above has the potential to mitigates this
problem.

It is instructive to test a few sensible examples of f and g to see if it is possible to create
a singularity at the origin. Remember we must make sure r 7→ f(r− t) + g(r+ t) is odd!
You should find your attempts to create a singularity are always thwarted.

Try, for example, g(s) = sm for s ≥ 0 and m = 2, 3.

This is a hard problem to answer rigorously, but is a nice exercise to play with to inves-
tigate what the truth might be.

Section 2.4.1 of Evans Partial Differetial Equations makes concrete statements about the
regularity of solutions to the wave equation. See Theorems 1 and 2 there. They state
that if the initial data is sufficiently smooth, then the u will be correspondingly smooth.
In broad terms there is no difference between one and three dimensions.


