Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 7

7.1 Recall that the solution to (6.1) is given by (6.3):

x+ct
u(z,t) = % (g(x+ct) + glx —ct)) + %/ h(y)dy.

(a) If we take g(x) = ¢® and h(x) = sinz then

1
u(w,t) = = (e"T + ") — % (cos(z + ct) — cos(x — ct)) .

N | =

(b) If we take g(z) = log(1 + z?) and h(z) = 4 + = then

1 4dct t
ula, ) = 5 (og(x + et) + log(x — ct) + #
7.2 Using (6.3), we have
1 1 —x+ct
u(-at) = oot +g(-a— )+ o [ hwdy
—xz—ct

But if g and h are odd functions then

—x+ct
u(-at) == (alo— )+l +et) = 5o [ hl-pdy

—x—ct
1 1 x—ct
=—(g(x+ct)+g(x—ct))+ — h(z)dz
2 20 x+ct
1 1 x+ct
== t —ct)) — — h
5 (oo +et) +alae—ct) =5 [ hies

= —u(z,t),
so u(+,t) is an odd function for each ¢.

7.3 (a) We can factorise the differential equation as (9; + 9,)(9¢ — 49, )u(x,t) = 0 and so can
then view it as the system

{ (O + Oz)v(z,t) = 0;
(0 — 40, )u(x,t) = v(x,t).

Using the method of characteristics, we can see that the general solution to the first
equation is v(x,t) = f(x — t) where f is any differentiable function.

To solve the second equation we first solve the homogeneous equation associated to it.
Again, the method of characteristics shows the general solution to the homogeneous
equation (0y — 40;)up(x,t) = 0 is up(z,t) = g(z + 4t) where ¢ is any differentiable
function. It is easy to find a particular solution to the second equation by starting with
the anzats u,(z,t) = V(x —t). Substituting this into the equation gives

—V'(x—t)—4V'(z —t) = f(z — 1),

so a particular solution is uy(z,t) = V(z —t) where V(y) = —(1/5) [ f(y)dy. We add w,
and uy, together to obtain the general solution: u(z,t) = V(x —t) + g(z + 4¢).
Now we can make use of the initial conditions to choose g and V. We see that we require

{ u(z,0) = V(z) + g(z) = 2%;
Ou(x,0) = =V'(z) + 4¢'(x) = €*.

It is convenient to differentiate the first equation, so we obtain two conditions for V/ and

g
{ Vi(z) + ¢'(z) = 2;
—V'(z) + 44’ (x) = e*.



This is easy to solve and tells us that V/(z) = (8¢ —e%)/5 and ¢'(x) = (2z 4 €*)/5. This
means that V(z,t) = (422 — e*)/5 + C; and g(x) = (2% + €%)/5 + C; for some constants
C; and Cs, but the intial condition u(x,0) = 22 tells us that C; = —Cs, so

4z —1)? — et (1 4 41)% 4 ertH
5

u(x,t) =

(b) We can factorise the differential equation as (9; — 40;)(0; + 50z)u(x,t) = 0 and so can
then view it as the system

{ (0 — 40, )v(z,t) = 0;
(0¢ + 50, )u(x, t) = v(x,t).

Using the method of characteristics just as before, we can see that the general solution
to the first equation is v(z,t) = f(x + 4t) where f is any differentiable function.

To solve the second equation we first again solve the homogeneous equation associated
to it. The method of characteristics shows the general solution to the homogeneous
equation (0; + 50 )up(x,t) = 0 is up(z,t) = g(z — 5t) where ¢ is any differentiable
function. A particular solution to the second equation is found by starting with the
anzats u,(z,t) = V(x + 4t). Substituting this into the equation gives

4V (z + 4t) + 5V (x + 4t) = f(z + 41),

so a particular solution is u,(z,t) = V(z + 4t) where V(y) = (1/9) [ f(y)dy. We add w,
and uy, together to obtain the general solution: u(z,t) = V(z + 4t) + g(x — 5t).

Now we can make use of the initial conditions to choose g and V. We see that we require

{ u(z,0) =V(z) +g(x) = 2%
Opu(z,0) = 4V'(x) — 5g'(z) = e*.

It is convenient to differentiate the first equation, so we obtain two conditions for V'’ and
/

g’
V'(z) +g'(z) = 2x;
4V'(z) — 5g' () = €”.
This tells us that ¢’(z) = (8¢ — €*)/9 and V'(z) = (10x + €*)/9. This means that
g(z,t) = (422 — e®)/9+ Oy and V(x) = (522 + €*)/9 + Cs for some constants C; and Cs,
but the intial condition u(zx,0) = 22 tells us that C; = —Ca, so

4(z — 5t)% — e" 5 + 5(x + 4t)2 + e”TH
9

u(x,t) =

7.4 For a solution u of the wave equation 0y u— 0y, u = 0 (with p =T = ¢ = 1), the energy density
is defined to be

el 1) = 3 (@l ) + (Deu(z, 1))

and the momentum density
p(z,t) = Opu(z, t)0yu(x, t).

(a) We compute

%(x, t) = Owu(x, t)Opu(x,t) + Opu(z, t)Opru(x, t)
%(x, t) = Opu(x, t)Oppu(z, t) + Opu(z, t)Oppu(z, )
%(x, t) = Opu(z, t)dyu(x, t) + Ou(z, t)dgiu(x, t)
%(CE, t) = Oipu(w, t)Opu(z, t) + Opu(x, t)Oppu(z, t)

So clearly if Oyu — Oyyu = 0 then Oe/0t = Op/Ox and Op/Ot = de/Ox.



(b) Furthermore, using the above results, if Oyu — 0., u = 0 we have

9%e 0%p 9%p 9%e
w(l‘,t) = m(fl;,t) = %(fﬂ,t) a 2($ t) and
0%p 0%e 0%e 0%p

T (x,t) = t) = —— (.t t
52 1) = i 1) = 5 @) = Gz (@)
7.5 Suppose that u is a solution of the wave equation, so 93u — c20%u = 0.

(a) For a fixed y € R, O,v(x,t) = Oru(x — y,t), Opev(z,t) = Ou(x — y,t), O(x,t) =
Opu(x — y,t) and dyv(x,t) = O3u(x — y,t), Thus

Opv(z,t) — czamv(x,t) = 8§u(x —y,t) — c%?‘fu(x —y,t) = (8§u - c%’?fu)(x —y,t) =0.

) ) = a@lu(ax at), Opzw(z,t) = a?0?u(ax,at), duw(x,t) =

(b) For a fixed a € R, d,w(z
t) = a?03u(az,at), Thus

adqu(azx,at) and Onw(z,
Opw(z,t) — 0w (x, t) = a®03u(ax, at) — c2a*0?u(ax, at) = a*(05u — c*diu)(azx, at) = 0.
7.6 Consider a solution u to the damped string equation
Oru(x,t) — 2Oppul(z, t) + rowu(z,t) =0

for ¢ =T/p and T, p,r > 0. Define the energy by the same formula we used in class:

Elu)(t) = %/_Oo p(Opu(z,t))? + T(dpu(z, t))*dx.
‘We have
% (; /_OO p(@tu(x,t))2d$> — %/;oo p(‘)tu(x,t)attu(x,t)dx
= ;/O; Opu(x, t)(TOppu(x, t) — rpdyu(x, t))dx
= _% /_Z TOpu(w,t)0pu(w,t)dr — ;/_O; rp(Qpu(z,t))*da
_ _% (; /_ O; T(axU(m,t))de> - % /_ Z rp(Ovu(z, 1)) dz.
Therefore
Bl (1) = % (; /_ = Ol 1) +T(8mu(x7t))2da:> _ _% /_ (Ol )2z < 0,

hence the energy F[u] is a non-increasing function.



