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Spring Semester 2019
Solutions to Homework 7

7.1 Recall that the solution to (6.1) is given by (6.3):

u(x, t) =
1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x+ct

x−ct
h(y)dy.

(a) If we take g(x) = ex and h(x) = sinx then

u(x, t) =
1

2

(
ex+ct + ex−ct

)
− 1

2c
(cos(x+ ct)− cos(x− ct)) .

(b) If we take g(x) = log(1 + x2) and h(x) = 4 + x then

u(x, t) =
1

2
(log(x+ ct) + log(x− ct)) +

4ct+ xct

c
.

7.2 Using (6.3), we have

u(−x, t) =
1

2
(g(−x+ ct) + g(−x− ct)) +

1

2c

∫ −x+ct

−x−ct
h(y)dy

But if g and h are odd functions then

u(−x, t) = −1

2
(g(x− ct) + g(x+ ct))− 1

2c

∫ −x+ct

−x−ct
h(−y)dy

= −1

2
(g(x+ ct) + g(x− ct)) +

1

2c

∫ x−ct

x+ct

h(z)dz

= −1

2
(g(x+ ct) + g(x− ct))− 1

2c

∫ x+ct

x−ct
h(z)dz

= −u(x, t),

so u(·, t) is an odd function for each t.

7.3 (a) We can factorise the differential equation as (∂t + ∂x)(∂t − 4∂x)u(x, t) = 0 and so can
then view it as the system {

(∂t + ∂x)v(x, t) = 0;
(∂t − 4∂x)u(x, t) = v(x, t).

Using the method of characteristics, we can see that the general solution to the first
equation is v(x, t) = f(x− t) where f is any differentiable function.

To solve the second equation we first solve the homogeneous equation associated to it.
Again, the method of characteristics shows the general solution to the homogeneous
equation (∂t − 4∂x)uh(x, t) = 0 is uh(x, t) = g(x + 4t) where g is any differentiable
function. It is easy to find a particular solution to the second equation by starting with
the anzats up(x, t) = V (x− t). Substituting this into the equation gives

−V ′(x− t)− 4V ′(x− t) = f(x− t),

so a particular solution is up(x, t) = V (x− t) where V (y) = −(1/5)
∫
f(y)dy. We add up

and uh together to obtain the general solution: u(x, t) = V (x− t) + g(x+ 4t).

Now we can make use of the initial conditions to choose g and V . We see that we require{
u(x, 0) = V (x) + g(x) = x2;
∂tu(x, 0) = −V ′(x) + 4g′(x) = ex.

It is convenient to differentiate the first equation, so we obtain two conditions for V ′ and
g′: {

V ′(x) + g′(x) = 2x;
−V ′(x) + 4g′(x) = ex.



This is easy to solve and tells us that V ′(x) = (8x− ex)/5 and g′(x) = (2x+ ex)/5. This
means that V (x, t) = (4x2 − ex)/5 + C1 and g(x) = (x2 + ex)/5 + C1 for some constants
C1 and C2, but the intial condition u(x, 0) = x2 tells us that C1 = −C2, so

u(x, t) =
4(x− t)2 − ex−t + (x+ 4t)2 + ex+4t
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(b) We can factorise the differential equation as (∂t − 4∂x)(∂t + 5∂x)u(x, t) = 0 and so can
then view it as the system {

(∂t − 4∂x)v(x, t) = 0;
(∂t + 5∂x)u(x, t) = v(x, t).

Using the method of characteristics just as before, we can see that the general solution
to the first equation is v(x, t) = f(x+ 4t) where f is any differentiable function.

To solve the second equation we first again solve the homogeneous equation associated
to it. The method of characteristics shows the general solution to the homogeneous
equation (∂t + 5∂x)uh(x, t) = 0 is uh(x, t) = g(x − 5t) where g is any differentiable
function. A particular solution to the second equation is found by starting with the
anzats up(x, t) = V (x+ 4t). Substituting this into the equation gives

4V ′(x+ 4t) + 5V ′(x+ 4t) = f(x+ 4t),

so a particular solution is up(x, t) = V (x+ 4t) where V (y) = (1/9)
∫
f(y)dy. We add up

and uh together to obtain the general solution: u(x, t) = V (x+ 4t) + g(x− 5t).

Now we can make use of the initial conditions to choose g and V . We see that we require{
u(x, 0) = V (x) + g(x) = x2;
∂tu(x, 0) = 4V ′(x)− 5g′(x) = ex.

It is convenient to differentiate the first equation, so we obtain two conditions for V ′ and
g′: {

V ′(x) + g′(x) = 2x;
4V ′(x)− 5g′(x) = ex.

This tells us that g′(x) = (8x − ex)/9 and V ′(x) = (10x + ex)/9. This means that
g(x, t) = (4x2− ex)/9 +C1 and V (x) = (5x2 + ex)/9 +C2 for some constants C1 and C2,
but the intial condition u(x, 0) = x2 tells us that C1 = −C2, so

u(x, t) =
4(x− 5t)2 − ex−5t + 5(x+ 4t)2 + ex+4t
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7.4 For a solution u of the wave equation ∂ttu−∂xxu = 0 (with ρ = T = c = 1), the energy density
is defined to be

e(x, t) =
1

2
((∂tu(x, t))2 + (∂xu(x, t))2)

and the momentum density
p(x, t) = ∂tu(x, t)∂xu(x, t).

(a) We compute

∂e

∂t
(x, t) = ∂tu(x, t)∂ttu(x, t) + ∂xu(x, t)∂xtu(x, t)

∂e

∂x
(x, t) = ∂tu(x, t)∂txu(x, t) + ∂xu(x, t)∂xxu(x, t)

∂p

∂t
(x, t) = ∂ttu(x, t)∂xu(x, t) + ∂tu(x, t)∂xtu(x, t)

∂p

∂x
(x, t) = ∂txu(x, t)∂xu(x, t) + ∂tu(x, t)∂xxu(x, t)

So clearly if ∂ttu− ∂xxu = 0 then ∂e/∂t = ∂p/∂x and ∂p/∂t = ∂e/∂x.



(b) Furthermore, using the above results, if ∂ttu− ∂xxu = 0 we have

∂2e

∂t2
(x, t) =

∂2p

∂t∂x
(x, t) =

∂2p

∂x∂t
(x, t) =

∂2e

∂x2
(x, t) and

∂2p

∂t2
(x, t) =

∂2e

∂t∂x
(x, t) =

∂2e

∂x∂t
(x, t) =

∂2p

∂x2
(x, t).

7.5 Suppose that u is a solution of the wave equation, so ∂22u− c2∂21u = 0.

(a) For a fixed y ∈ R, ∂xv(x, t) = ∂1u(x − y, t), ∂xxv(x, t) = ∂21u(x − y, t), ∂tv(x, t) =
∂2u(x− y, t) and ∂ttv(x, t) = ∂22u(x− y, t), Thus

∂ttv(x, t)− c2∂xxv(x, t) = ∂22u(x− y, t)− c2∂21u(x− y, t) = (∂22u− c2∂21u)(x− y, t) = 0.

(b) For a fixed a ∈ R, ∂xw(x, t) = a∂1u(ax, at), ∂xxw(x, t) = a2∂21u(ax, at), ∂tw(x, t) =
a∂2u(ax, at) and ∂ttw(x, t) = a2∂22u(ax, at), Thus

∂ttw(x, t)−c2∂xxw(x, t) = a2∂22u(ax, at)−c2a2∂21u(ax, at) = a2(∂22u−c2∂21u)(ax, at) = 0.

7.6 Consider a solution u to the damped string equation

∂ttu(x, t)− c2∂xxu(x, t) + r∂tu(x, t) = 0

for c2 = T/ρ and T, ρ, r > 0. Define the energy by the same formula we used in class:

E[u](t) =
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx.

We have

d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2dx

)
=

1

2

∫ ∞
−∞

ρ∂tu(x, t)∂ttu(x, t)dx

=
1

2

∫ ∞
−∞

∂tu(x, t)(T∂xxu(x, t)− rρ∂tu(x, t))dx

= −1

2

∫ ∞
−∞

T∂txu(x, t)∂xu(x, t)dx− 1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx

= − d

dt

(
1

2

∫ ∞
−∞

T (∂xu(x, t))2dx

)
− 1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx.

Therefore

E[u]′(t) =
d

dt

(
1

2

∫ ∞
−∞

ρ(∂tu(x, t))2 + T (∂xu(x, t))2dx

)
= −1

2

∫ ∞
−∞

rρ(∂tu(x, t))2dx ≤ 0,

hence the energy E[u] is a non-increasing function.


