
Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 6

6.1 Consider the function Φ: Rn \ {0} → R defined by

Φ(x) =

{
− 1

2α(2) ln |x| if n = 2,
1

n(n−2)α(n)
1

|x|n−2 if n > 2,

where α(n) is the volume of the unit ball in Rn. (So, in particular, α(2) = π and α(3) = 4π/3.)

(a) For x = (x1, x2, . . . , xn) 6= 0 we have

∂Φ

∂xj
(x) =

−xj
nα(n)

(
n∑
k=1

x2
k

)−n/2
and

∂2Φ

∂x2
j

(x) =
−1

nα(n)

(
n∑
k=1

x2
k

)−n/2
+

x2
j

α(n)

(
n∑
k=1

x2
k

)−(n+2)/2

.

Therefore

∆Φ(x) =

n∑
j=1

∂2Φ

∂x2
j

(x) =
−1

α(n)

(
n∑
k=1

x2
k

)−n/2
+

∑n
j=1 x

2
j

α(n)

(
n∑
k=1

x2
k

)−(n+2)/2

= 0.

(b) From (a) we see that

∇Φ(x) =
−1

nα(n)

x

|x|n
so

∂Φ

∂n
(x) = n · ∇Φ(x) =

x

|x|
· −1

nα(n)

x

|x|n
=
−1

nα(n)

1

|x|n−1
.

6.2 We want to prove the following.

Lemma. Let Ω be an open bounded set with C1 boundary and suppose that u ∈ C2(Ω) is such
that ∆u = f for some f ∈ C(Ω). Then

u(x) =

∫
∂Ω

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y)−

∫
Ω

f(y)Φ(y − x)dy. (1)

for each x ∈ Ω.

Proof. We wish to apply Green’s second identity (5.10) to the functions Φ(· − x) and u in Ω.
However we cannot as Φ(·−x) is not defined at x. We instead apply (5.10) to Ωr := Ω\Br(x).
We obtain∫

Ωr

f(y)Φ(y − x)dy =

∫
∂Ωr

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y).

However, ∂Ωr has two components, ∂Ω and ∂Br(x). The integral over ∂Ω appears on the
right-hand side of (1), so we wish to calculate the integral over ∂Br(x). From (5.11) it is clear
that Φ is a radial function—that is, we can write Φ(x) = φ(|x|) for

φ(r) =

{
− 1

2α(2) ln |r| if n = 2,
1

n(n−2)α(n)
1

rn−2 if n > 2.

Remembering that the outward normal n to Ωr is actually an inward normal to Br(x) on
∂Br(x), we have from (5.12) that

∂Φ

∂n
(y − x) =

1

nα(n)

1

rn−1
.



Thus ∫
∂Br(x)

{
Φ(y − x)

(
∂u

∂n

)
(y)−

(
∂Φ

∂n

)
(y − x)u(y)

}
dσ(y)

=

∫
∂Br(x)

φ(r)

(
∂u

∂n

)
(y)dσ(y)−

∫
∂Br(x)

1

nα(n)

1

rn−1
u(y)dσ(y)

=φ(r)

(∫
∂Br(x)

(
∂u

∂n

)
(y)dσ(y)

)
−

(
1

nα(n)rn−1

∫
∂Br(x)

u(y)dσ(y)

)
.

Applying the divergence theorem (with −n being the outward unit normal), we see that(∫
∂Br(x)

(
∂u

∂n

)
(y)dσ(y)

)
= −

∫
Br(x)

∆u(y)dy = −
∫
Br(x)

f(y)dy.

Since f ∈ C(Ω) we know it is bounded, say by M , so

φ(r)

(∫
∂Br(x)

(
∂u

∂n

)
(y)dσ(y)

)
= −φ(r)

∫
Br(x)

f(y)dy ≤ φ(r)α(n)rnM → 0

as r → 0.

Since nα(n)rn−1 is the surface area of ∂Br(x) and u is continuous,

lim
r→0

(
1

nα(n)rn−1

∫
∂Br(x)

u(y)dσ(y)

)
= u(x).

Putting these facts together, and taking the limit r → 0 we see the lemma is proved. [It’s
worth observing that since f is bounded the integral

∫
Ωr
f(y)Φ(y−x)dy converges absolutely

to
∫

Ω
f(y)Φ(y − x)dy as r → 0, since the singularity of Φ is absolutely integrable.]

6.3 We wish to prove the following theorem.

Theorem. Let Ω ⊂ Rn be an open bounded set with C2 boundary, and suppose h ∈ C2(∂Ω)
and f ∈ C(Ω). If G is a Green’s function for the Laplacian in Ω then the solution of the
boundary value problem {

∆u = f in Ω, and
u = h on ∂Ω,

is given by

u(x) = −
∫
∂Ω

(
∂G(x, ·)
∂n

(y)

)
h(y)dσ(y)−

∫
Ω

f(y)G(x,y)dy. (2)

where (∂G(x, ·)/∂n)(y) := n(y) · ∇yG(x,y) is the normal derivative of y 7→ G(x,y).

Proof. Green’s second identity (5.10) applied to the functions u and y 7→ G(x,y)− Φ(y − x)
tells us

−
∫

Ω

(G(x, z)−Φ(z−x))f(z)dz =

∫
∂Ω

u(z)
∂(G(x, ·)− Φ(· − x))

∂n
(z)−(G(x, z)−Φ(z−x))

∂u

∂n
(z)dσ(z).

and from (1) we have

u(x) =

∫
∂Ω

{
Φ(z− x)

(
∂u

∂n

)
(z)−

(
∂Φ

∂n

)
(z− x)u(z)

}
dσ(z)−

∫
Ω

f(z)Φ(z− x)dz.

Taking the difference of the two equalities and using the fact that G(x, z) = 0 for z ∈ ∂Ω gives
(2).

6.4 Let Ω be an open bounded set with C2 boundary.



(a) i. Fix x ∈ Ω. Suppose we have two Green’s functions G1 and G2 for the Laplacian in
Ω. By Definition 5.10 we know that both

y 7→ G1(x,y)− Φ(y − x) and y 7→ G2(x,y)− Φ(y − x)

have continuous extensions which belongs to C2(Ω) and are harmonic in Ω. Here
Φ is the fundamental solution definted by (5.11). Thus the difference of these two
functions

y 7→ (G1(x,y)− Φ(y − x))− (G2(x,y)− Φ(y − x)) = G1(x,y)−G2(x,y)

also has a continuous extension which belongs to C2(Ω) and is harmonic in Ω.

ii. By Definition 5.10 we know that G1(x,y) = G2(x,y) = 0 for y ∈ ∂Ω. Thus y 7→
G1(x,y)−G2(x,y) solves (5.2) with f = 0 and g = 0. Since we know from Section
5.2, there is at most one continuous solution to (5.2) and the zero function is also a
solution, we can conclude that G1(x,y) − G2(x,y) = 0. Thus there is at most one
Green’s function for a given Ω.

(b) i. Fix x,y ∈ Ω with x 6= y and consider the functions z 7→ u(z) := G(x, z) and
z 7→ v(z) := G(y, z). We apply Green’s second identity (5.10) to u and v in the
domain Ωr := Ω \ (Br(x) ∪Br(y)) for r > 0 so small that (Br(x) ∪Br(y)) ⊂ Ω and
Br(x) ∩Br(y) = ∅. We obtain

0 =

∫
∂Ωr

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

=

∫
∂Ω

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

+

∫
∂Br(x)c

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

+

∫
∂Br(y)c

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

= −
∫
∂Br(x)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

−
∫
∂Br(y)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z).

since G(x, z) = G(y, z) = 0 for z ∈ ∂Ω.

ii. Since we know that z 7→ G(x, z) − Φ(z − x) has a C2(Ω) extension, we know that
z 7→ G(x, z)−Φ(z−x) is bounded near x. We also know that ∂G(y, ·)/∂n is bounded
near x, since x 6= y. This means that the integrand in∫

∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)
∂n

(z)dσ(z)

is bounded. This fact together with the fact that the measure of ∂Br(x) tends to
zero as r → 0, means the integral above tends to zero as r → 0. By the same logic∫

∂Br(x)

G(y, z)
∂(G(x, ·)− Φ(· − x))

∂n
(z)dσ(z)→ 0

as r → 0.

iii. Since Φ is a radial function, we can write Φ(z − x) = φ(r) when z ∈ ∂Br(x). This
fact and the divergence theorem give∫

∂Br(x)

Φ(z− x)
∂G(y, ·)
∂n

(z)dσ(z)

= φ(r)

∫
∂Br(x)

∂G(y, ·)
∂n

(z)dσ(z)

= φ(r)

∫
∂Br(x)

∆(G(y, ·))(z)dσ(z) = 0.



By (5.12) (homework question 6.1) we can compute∫
∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z)

=

∫
∂Br(x)

G(y, z)
−1

nα(n)

1

|z− x|n−1
dσ(z)

=
−1

nα(n)

1

rn−1

∫
∂Br(x)

G(y, z)dσ(z)

= −G(y,x)

by the mean value property for harmonic functions (Theorem 5.6).

iv. We can compute∫
∂Br(x)

G(x, z)
∂G(y, ·)
∂n

(z)−G(y, z)
∂G(x, ·)
∂n

(z)dσ(z)

=

∫
∂Br(x)

(G(x, z)− Φ(z− x))
∂G(y, ·)
∂n

(z)dσ(z) +

∫
∂Br(x)

Φ(z− x)
∂G(y, ·)
∂n

(z)dσ(z)

−
∫
∂Br(x)

G(y, z)

(
∂G(x, ·)
∂n

(z)− ∂Φ

∂n
(z− x)

)
dσ(z)−

∫
∂Br(x)

G(y, z)
∂Φ

∂n
(z− x)dσ(z)

→ 0 + 0− 0 +G(y,x)

as r → 0 by our work above.

v. The statement we obtain is∫
∂Br(y)

G(y, z)
∂G(x, ·)
∂n

(z)−G(x, z)
∂G(y, ·)
∂n

(z)dσ(z)→ G(x,y).

which is the negative of the second term on the right-hand side of (†). Thus, in the
limit r → 0, (†) becomes 0 = G(y,x)−G(x,y).


