Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 6

6.1 Consider the function ®: R™ \ {0} — R defined by
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n(n—2)a(n) [x[*~2 ’

where a(n) is the volume of the unit ball in R™. (So, in particular, «(2) = 7 and «(3) = 47/3.)
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6.2 We want to prove the following.

Lemma. Let Q2 be an open bounded set with C' boundary and suppose that u € C?() is such
that Au = f for some f € C(Q)). Then

w = [ {ay -2 (52) ) (52) 0= x0ut) faot) — [ r)aty = xay. (1)

for each x € Q.

Proof. We wish to apply Green’s second identity (5.10) to the functions ®(- — x) and w in Q.
However we cannot as ®(- —x) is not defined at x. We instead apply (5.10) to Q, := Q\ B, (x).
We obtain

/m fy)®(y —x)dy = /89 {é(y —x) (gg) (y) - (gi) (v — X)u(y)} do(y).

However, 092, has two components, 9Q) and dB,(x). The integral over 92 appears on the
right-hand side of (1), so we wish to calculate the integral over 0B, (x). From (5.11) it is clear
that ® is a radial function—that is, we can write ®(x) = ¢(|x|) for

— 1 In|r if n =2,
ory=q “m@ R
n(n—2)a(n) rv—2 if n > 2.

Remembering that the outward normal n to €2, is actually an inward normal to B,(x) on
0B, (x), we have from (5.12) that




Thus
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:/z’)Br(x) (r) (gi) (y)do(y) — /83,‘(x) ml(n) rnlilu(y)da'(y)
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Applying the divergence theorem (with —n being the outward unit normal), we see that

</03T<x) <§z) (y)do(y)> = /Br(x) Au(y)dy = /Br(x) fy)dy.

Since f € C(Q) we know it is bounded, say by M, so
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Since na(n)r™~* is the surface area of 9B, (x) and u is continuous,

i ! =u(x
}g% <na(n)r”1 /aBT(x)U(Y)dU(YO = u(x).

Putting these facts together, and taking the limit r — 0 we see the lemma is proved. [It’s
worth observing that since f is bounded the integral fQ” f(y)®(y — x)dy converges absolutely

to [, f(y)®(y —x)dy as r — 0, since the singularity of ® is absolutely integrable.] O

6.3 We wish to prove the following theorem.

Theorem. Let Q@ C R" be an open bounded set with C? boundary, and suppose h € C*(0Q)
and f € C(Q). If G is a Green’s function for the Laplacian in ) then the solution of the
boundary value problem

Au=f inQ, and
u=~h on 012,

is given by
_ aG(X7)
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where (0G(x,-)/0n)(y) :==n(y) - VyG(x,y) is the normal derivative of y — G(x,y).

Proof. Green’s second identity (5.10) applied to the functions u and y — G(x,y) — ®(y — x)
tells us
_ IG(x,) — (- —x)) du
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and from (1) we have

w) = [ {o—x(5n) @~ (5) @0t | dota) [ 12100z x)ta

Taking the difference of the two equalities and using the fact that G(x,z) = 0 for z € 99 gives
(2). O

6.4 Let Q be an open bounded set with C? boundary.
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ii.

iii.

Fix x € . Suppose we have two Green’s functions G; and G4 for the Laplacian in
2. By Definition 5.10 we know that both

y— Gi(x,y) —P(y—x) and y— Ga(x,y) — P(y — x)

have continuous extensions which belongs to C?(Q) and are harmonic in Q. Here
® is the fundamental solution definted by (5.11). Thus the difference of these two
functions

y = (Gi(xy) = 2(y — %)) — (Ga(x,y) — ®(y — x)) = G1(x,y) — Ga(x,y)

also has a continuous extension which belongs to C?(Q2) and is harmonic in €.

By Definition 5.10 we know that G1(x,y) = Ga(x,y) = 0 for y € 9Q. Thus y —
Gi(x,y) — Ga(x,y) solves (5.2) with f = 0 and g = 0. Since we know from Section
5.2, there is at most one continuous solution to (5.2) and the zero function is also a
solution, we can conclude that G1(x,y) — G2(x,y) = 0. Thus there is at most one
Green’s function for a given €.

Fix x,y € Q with x # y and consider the functions z — u(z) := G(x,z) and
z — v(z) := G(y,z). We apply Green’s second identity (5.10) to u and v in the
domain Q, := Q\ (B,(x) U B,(y)) for r > 0 so small that (B,(x) U B,(y)) C Q and

B,.(x) N B,.(y) = 0. We obtain
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since G(x,z) = G(y,z) = 0 for z € 9Q.

Since we know that z — G(x,z) — ®(z — x) has a C%(Q) extension, we know that
z — G(x,2) — ®(z—x) is bounded near x. We also know that 0G(y, -)/0n is bounded
near x, since x # y. This means that the integrand in

[ (Gxn-at-x) X @it
9B.(x)

is bounded. This fact together with the fact that the measure of B, (x) tends to
zero as r — 0, means the integral above tends to zero as r — 0. By the same logic

/ G(y,z) AGlx, .)a_nq)(. —x)) (z)do(z) — 0
OB, (x)

asr — 0.

Since ® is a radial function, we can write ®(z — x) = ¢(r) when z € 0B, (x). This
fact and the divergence theorem give




By (5.12) (homework question 6.1) we can compute
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by the mean value property for harmonic functions (Theorem 5.6).
iv. We can compute

| xR - a0 X @it
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as 7 — 0 by our work above.
v. The statement we obtain is

/ G(y,z) aGa(: ) (z) — G(x,2) aGa(i’ ) (z)do(z) = G(x,y).
9B, (y)

which is the negative of the second term on the right-hand side of (). Thus, in the
limit » — 0, (f) becomes 0 = G(y,x) — G(X,y).



