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3.1 Consider two points x,y ∈ R2 with polar coordinates (r, θ) and (a, φ), respectively. Looking
at Figure 1 we can see that the right-angled triangle with vertices x, y and z has hypotenuse
of length |x− y| and the other two sides are of length r− a cos(φ− θ) and a sin(φ− θ). Thus,
by Pythagoras’ theorem

|x− y|2 = (r − a cos(φ− θ))2 + (a sin(φ− θ))2

= r2 − 2ar cos(φ− θ) + a2(cos2(φ− θ) + sin2(φ− θ))
= r2 − 2ar cos(φ− θ) + a2.

(1)

Figure 1: Two points x,y ∈ R2 with polar coordinates (r, θ) and (a, φ), respectively.

A line integral of f : γ → R over a curve γ ⊂ R2 is defined to be∫
γ

f(y)dσ(y) =

∫ 2π

0

f(r(φ))|r′(φ)|dφ

where r : [0, 2π] → R is a parametrisation of γ. Thus, if we take the parametrisation r(φ) =
(a cosφ, a sinφ) of the cicle {y ∈ R2 | |y| = a}, then |r′(φ)| = a and∫

|y|=a

h̃(y)

|x− y|2
dσ(y) =

∫ 2π

0

h̃(r(φ))

|x− r(φ)|2
adφ = a

∫ 2π

0

h(φ)

r2 − 2ar cos(φ− θ) + a2
dφ,

where we used (1) (observing r(φ) has polar coordinates (a, φ)). Since |x|2 = r2, this implies

(a2 − |x|2)

2πa

∫
|y|=a

h̃(y)

|x− y|2
dσ(y) =

(a2 − r2)

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

3.2 We search for solutions of the form u(r, θ) = R(r)Θ(θ) via the method of separation of variables,
just as we did in Section 5.3.2. Exactly as before we wish to solve the two separate ODEs

Θ′′ + λΘ = 0 and r2R′′ + rR′ − λR = 0,

for λ ∈ R, but instead of wanting to find periodic Θ as we did for the disc, the boundary
conditions u(r, 0) = u(r, β) = 0 imply we need

Θ(0) = Θ(β) = 0.

Solving the ODE for Θ with these boundary conditions gives

λ =

(
mπ

β

)2

and Θ(θ) = sin(mπθ/β)



for m = 1, 2, . . . . We now solve the ODE for R, which is of Euler form. We find that R(r) = rα,
where α2 = λ. We reject negative exponents α, as they produce solutions R which are not
continuous at the origin (the vertex of the wedge).1 Thus we have a solution

u(r, θ) = R(r)Θ(θ) = rmπ/β sin(mπθ/β)

for each positive integer m. In order to try to satisfy the boundary condition u(a, θ) = h(θ)
we consider linear combinations of these,

u(r, θ) =

∞∑
m=1

Amr
mπ/β sin(mπθ/β),

and consider the boundary value

h(θ) = u(a, θ) =

∞∑
m=1

Ama
mπ/β sin(mπθ/β),

which has the form of a Fourier sine series for h, so it is natural to choose

Am =
2

βamπ/β

∫ β

0

h(φ) sin(mπφ/β)dφ

and so

u(r, θ) =
2

β

∞∑
m=1

( r
a

)mπ/β ∫ β

0

h(φ) sin(mπφ/β) sin(mπθ/β)dφ.

3.3 We search for a solution which separates in the Cartesian coordinates x and y, that is, we
search for a solution u of the form u(x, y) = X(x)Y (y). In this case the equation ∆u(x, y) = 0
can be rewritten as X ′′(x)Y (y) +X(x)Y ′′(y) = 0, and will be fullfiled if X and Y satisfy

X ′′(x) = λX(x) and Y ′′(x) = −λY (x)

for some constant λ.

For negative λ, the general solution for Y has the form

Y (y) = Ae
√
−λy +Be−

√
−λy.

But the only choice of constants A and B which can satisfy the first two boundary conditions
Y ′(0) = Y ′(π) = 0 is A = B = 0.

For non-negative λ, the general solutions for Y has the form

Y (y) = Aei
√
λy +Be−i

√
λy,

when λ > 0 or Y (y) = A+By in the case λ = 0. The boundary conditions Y ′(0) = Y ′(π) = 0
require A = B and λ = n2 for n = 1, 2, . . . and B = 0 when λ = 0. Thus for each non-negative
integer n,

Yn(y) = An cos(ny)

solves Y ′′n (x) = −λnYn(x) with λn = n2.

Functions Xn which solve X ′′n(x) = λnXn(x) and the boundary condition Xn(0) = 0 are
Xn(x) = sinh(nx) for positive n and X0(x) = x.

Since the Laplacian is a linear operator and the first three boundary conditions are homo-
geneous, we can take linear combinations of Xn(x)Yn(y) to constructed harmonic functions
which satisfies the first three boundary conditions:

u(x, y) = A0x+

∞∑
n=1

An sinh(nx) cos(ny).

1It is of course interesting to think about what would happen if we do not impose such continuity, but makes the
solution more involved.



In order to choose An so that the last boundary condition is satisfied, we write

cos2(y) =
cos(2y) + 1

2

and so we require

cos(2y) + 1

2
= cos2(y) = u(π, y) = A0π +

∞∑
n=1

An sinh(nπ) cos(ny).

This can be achieved by choosing A0 = 1/(2π), A2 = 1/(2 sinh(2π)) and all the other An equal
to zero. Thus, our sought-after function is

u(x, y) =
x

2π
+

sinh(2x) cos(2y)

2 sinh(2π)
.


