Partial Differential Equations (TATA27)
Spring Semester 2019
Solutions to Homework 1

1.1 (a) For u,v: R" — R and a,b € R, we have

V(au 4 bw) = (01 (au + bv), O2(au + bv), . . ., Oy (au + bv))
= a(O1u, Oou, . .., Opu) + b(O1v, Dav, . .., Opv) = aVu + bV,

so V is linear.

(b) For u = (u,u?,...,u") and v = (v!,v2,... "), functions from R" to R", and a,b € R,
we have

div(au + bv) = Z 9;(au? + bv?) Z (adju? + bdjv7)

j=1 j=1
=a Zajuj +0b Zajvj =adivu+ bdivo,
, =

so div is linear.

(c) For u = (u',u? v?) and u = (u',u?, u?), functions from R3 to R?, and a,b € R, we have

curl(au + bv)

= (82(au3 + b’l}3) - Bg(aug + b'[)z)7 Bg(aul + b'Ul) - al(aU3 + b’l)g), al(auz + b’l)g) - 82(au1 + b’Ul))
= (a82u3 + bag’l)g — a83u2 — bagvg, (Lagul + b83’l)1 — a81u3 — balvg, a61UQ + bal’()g — a82u1 — bag’l}l)

= a(Oaus — Ozuz, Dzuy — Dyusz, D1y — o) + b(Davs — D32, D301 — O1vs, Orva — Davr)

= acurlu + bcurlw,

so curl is linear.
(d) For u,v: R™ — R and a,b € R, we have
(au + bv) Z 0% (au + bv) Z 0;(adju + bo;v)
Jj=1

n

= Z(a@?u + b@?v) =a Z afu +0b Z 8]2»1)
j=1 j=1 j=1
= alAu + bAv,

so A is linear.

1.2 We can see directly that the orders of the equations are (a) 2, (b) 2, (c¢) 4 and (d) 1. Tt is also
easy to check that (a) and (d) are linear—which we do by check that if w and v are solutions,
and a and b are constants, then au + bv is a solution.

Equation (b) is also linear, although non-homogeneous. Indeed we can write the equation as
Lu = —x? where £ = 92 — 2. We can check that £ is a linear operator by considering two
functions v and v and two constants « and 3, and calculating

L{au+ Bv) = (au+ fru+ fo) — (Qu+ B)se = Qs — QUgy + v — Pz = aL(u) + BL(v).

We can see that (c) is non-linear, as although the first two terms in the equation are linear,
the third is not. Indeed vI+u +vI+v = /1 + (u+v) only if 4(1 +u)(1 +v) = 1, so
U > Up + Ugeer + V1 + u is not a linear operator.

1.3 We look for curves ¢ — (X (t),Y (¢)) on which a solution to
uz(z,y) +yuy(x,y) =0 forallz,y € R
will be constant. Thus, setting z(t) = u(X (¢), Y (t)), we require

0=2"(t) = X'(t)ua (X (1), Y (1)) + Y (t)uy (X (1), V(1))



1.4

1.5

so, comparing this equality with the PDE, we choose

X'(t)=1 and
Y'(t) =Y (t).
Thus, X(t) =t + c; and Y (t) = cee’. Let’s now consider a characteristic curve which passes

through an arbitrary point (x,y), say when ¢ = 0. Such a curve will satisfy 2 = X(0) =0+ ¢;
and y = Y (0) = c2€%, so ¢; = x and ¢y = y and we have X (t) =t + 2 and Y (t) = ye'.

To calculate the value of u(x,y) we will use the fact u is constant along the characteristic
curves and the fact we know u(0,y) = g(y). We need to calculate for which ¢ our characteristic
curve will cross the y-axis. This happens when 0 = X (¢) = t + «, that is when ¢t = —uz.
Y(—z) = ye™*, so we have u(x,t) = u(0,ye™") = g(ye~*). Thus we have calculated that the
solution must be

u(@,y) = glye ™).
We can check directly that this is indeed a solution.

We wish to find curves ¢t — (X(¢),Y(¢)) on which a solution to
(1 + 2 ug(z,y) + uy(r,y) =0 forallz,y e R
will be constant. Thus, setting z(t) = w(X (¢), Y (t)), we require
0=2"(t) = X' (H)ua (X (), Y () + Y (£)uy (X (), V(1))
so, comparing this equality with the PDE, we choose

X't)=1+X#)?* and

Y'(t) =1.
Thus, Y(t) =t + cy and
X'(t)
t = /dt = mdt = arCtaH(X(t)) + Cx

so X (t) = tan(t — cx), for constants cx,cy € R.
For a given point (z,y), we can find a characteristic curve which passes through (z,y), when
say t = 0, by taking Y (t) =t +y and X (¢) = tan(t + arctan(z)) (that is, by choosing ¢y =y
and cx = —arctan(x)). Then, using the fact u is constant on characteristic curves and the
condition u(0,y) = g(y),
u(z,y) = u(X(0),Y(0)) = u(X(—arctanx), Y (— arctan z))
= u(—arctanz + y,0)

= g(y — arctan z).
For fixed (z,t), z(s) = u(x + bs,t + s) so we can compute

d
Z'(s) = £u(x+bs,t+s) =b-Vu(z+bs,t+s)+u(x +bs,t +s),

so, using the PDE, we see that
2'(s) = f(x + bs,t + s5).
Integrating with respect to s from —¢ to 0, we obtain

0 0
/_t flz+bs,t+s)ds = / 2'(s)ds = z(0) — z(—t) = u(z,t) —u(x — bt,0) = u(z,t) — g(z — bt),

—t
SO

u(z,t) = g(z —bt) + /0 f(z —bs,t — s)ds. 1)



1.6 We search for appropriate curves (X,T) such that the solution on the curves s — z(s) :=
u(X(s),T(s)) behaves nicely. We have

d

#(s) = Tu(X(s), T(s)) = X'(s)0ru(X (s), T(s)) + T"(5)02u(X (5), T(s)),

$0 it seems reasonable to set X'(s) = a and T"(s) = b. Thus X (s) = as+cx and T'(s) = bs+cr
for constants cx,cr € R. We can then rewrite the PDE as

2'(8) + cz(s) = adiu(X (s),T(s)) + bdau(X(s),T(s)) + cu(X(s),T(s)) = 0.

This is an ODE with general solution z(s) = Ae™¢* for any A € R.

Now fix (z,t). If we choose cx = x and ey = ¢, then X (s) = as + x and T(s) = bs + ¢, and
when s = 0 the characteristic curve passes through (X (0),7(0)) = (x,t) and when s = —t/b
the curve passes through (X (—t/b),T(—t/b)) = (z — at/b,0). When s = —t/b we can use the
initial condition to find the value of z:

z(=t/b) = w(X(—t/b), T(—t/b)) = u(x — at/b,0) = g(x — at/b).

But on the other hand, using the form of the general solution to the characteristic ODE,
2(—t/b) = Aet/’ s0 A = g(x — at/b)e~ Y/’ Equally, for s = 0,

u(z,t) = z(0) = Ae=* = g(z — at/b)e /",

which gives us an expression for the solution .



