Graduate Course in Partial Differential Equations (MAI0133) Spring Semester 2017 Homework 1

The questions below are taken from Evans. You may wish to look there, as he sometimes includes hints.

- 1.1 Let U and V be open sets, with $V \subset \subset U$. Show that there exists a smooth function ζ such that $\zeta \equiv 1$ on V and $\zeta \equiv 0$ near ∂U .
- 1.2 Prove directly that if $u \in W^{1,p}(U)$, 1 and U is the open interval <math>(0,1), then

$$|u(x) - u(y)| \le |x - y|^{1 - 1/p} \left(\int_0^1 |u'(t)|^p dt \right)^{1/p}$$

for almost every $x, y \in [0, 1]$.

Please feel free to look through Chapter 5 in Evans for supporting theory and further reading. I am happy to also discuss your thoughts/problems related to the theory or any other questions you decide to think about related to the course.