- (1) Let $f: U \to \mathbf{R}$ be a smooth function defined on an open set $U \subseteq \mathbf{R}^{n+1}$.
 - (a) Define what it means for a vector **v** based at p to be tangent to the set $f^{-1}(c)$ at p for $c \in \mathbf{R}$ and $p \in f^{-1}(c)$. [3 marks]
 - (b) State precisely a theorem which characterises the set of all tangent vectors to $f^{-1}(c)$ at a point $p \in f^{-1}(c)$. What condition on f must hold? [7 marks]
 - (c) Prove that the gradient $\nabla f(p)$ of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p. [5 marks]
 - (d) Find a function $f, c \in \mathbf{R}$ and $p \in f^{-1}(c)$ such that the set of vectors tangent to $f^{-1}(c)$ at p is not a vector subspace of \mathbf{R}_p^{n+1} . [5 marks]
- (2) Let S be an *n*-surface in \mathbb{R}^{n+1} with $S = f^{-1}(c)$ for some smooth function $f: U \to \mathbb{R}$ and $c \in \mathbb{R}$, where U is an open subset of \mathbb{R}^{n+1} .
 - (a) Define what it means for a vector field \mathbf{X} on S to be a normal vector field.

[3 marks]

- (b) Define what it means to say S is connected. [3 marks]
- (c) Give two choices of unit normal vector field for S. [5 marks]
- (d) Suppose S is connected. Prove that there are at most two choices of unit normal vector fields. [9 marks]
- (3) (a) Define what it means for a parametrised curve on an oriented *n*-surface *S* to be a geodesic. [3 marks]
 - (b) State precisely a theorem regarding the existence and uniqueness of maximal geodesics on an oriented *n*-surface *S*. [3 marks]
 - (c) Let $p \in \mathbf{S}^n$ and $\mathbf{v} = (p, v) \in \mathbf{S}_p^n$. Define a parametrised curve $\alpha \colon \mathbf{R} \to \mathbf{R}^{n+1}$ by

$$\alpha(t) = (\cos(at))p + (\sin(at))q,$$

where $q = v/||\mathbf{v}||$ and $a \in \mathbf{R}$, for all $t \in \mathbf{R}$.

- (i) Show that, in fact, $\alpha \colon \mathbf{R} \to \mathbf{S}^n$.
- (ii) Show that $\alpha(0) = p$. Determine the value of $a \in \mathbf{R}$ for which $\dot{\alpha}(0) = \mathbf{v}$.
- (iii) For the value of a calculated in (3(c)ii), prove that α is the maximal geodesic of \mathbf{S}^n passing through p with velocity \mathbf{v} .
- (4) (a) Let S be an oriented n-surface with orientation **n**. Define the Weingarten map L_p for a $p \in S$. [5 marks]

1

[Please turn over]

- (b) State precisely a theorem which relates the Weingarten map $L_p(\mathbf{v})$ at $\mathbf{v} \in S_p$ and the acceleration of a parametrised curve $\alpha \colon I \to S$ with velocity $\dot{\alpha}(t_0) = \mathbf{v}$. [7 marks]
- (c) Show that all integral curves of a smooth tangent vector field **X** on *S* are geodesics if and only if $\nabla_{\mathbf{X}(p)} \mathbf{X}(p) \perp S_p$ for all $p \in S$. [8 marks]