Geometry Second Semester 2010/11 Homework 1

1. Let $\mathbf{v} = (p, v) = (p, v_1, v_2)$ and $\mathbf{w} = (p, w) = (p, w_1, w_2)$ be two vectors based at the point $p \in \mathbf{R}^2$ and denote by θ the angle between them. Use your knowledge of trigonometry (or any other method) to prove that

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta,$$

where $\mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2$ and $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$.

- 2. Find the local minima and local maxima of the following functions. Justify the answers you obtain in each case.
 - (a) $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3 2x^2 + x 3$ for all $x \in \mathbf{R}$.
 - (b) $g: (-3,3] \to \mathbf{R}$ defined by $g(x) = x^3 2x^2 + x 3$ for all $x \in (-3,3]$.
 - (c) $h: \mathbf{R}^2 \to \mathbf{R}$ defined by $h(x_1, x_2) = x_1^2 4x_1 + 4 + x_2^2$ for all $(x_1, x_2) \in \mathbf{R}^2$.
 - (d) $k: \mathbf{R}^2 \to \mathbf{R}$ defined by $k(x_1, x_2) = x_1^2 x_2^2$.
- 3. Prove the chain rule for real-valued functions: Let $f: (a, b) \to \mathbf{R}$ be differentiable at $x \in (a, b)$ and such that $f(x) \in (c, d)$. Also let $G: (c, d) \to \mathbf{R}$ be differentiable at f(x). Prove that $G \circ f$ is differentiable at x and

$$(G \circ f)'(x) = G'(f(x))f'(x).$$

- 4. Sketch typical level sets and the graph of the function $f: \mathbb{R}^2 \to \mathbb{R}$ when defined as follows.
 - (a) $f(x_1, x_2) = x_1$ for all $(x_1, x_2) \in \mathbf{R}^2$.
 - (b) $f(x_1, x_2) = x_1 x_2$ for all $(x_1, x_2) \in \mathbf{R}^2$.
 - (c) $f(x_1, x_2) = x_1^2 x_2^2$ for all $(x_1, x_2) \in \mathbf{R}^2$.
- 5. Sketch the level sets $f^{-1}(c)$ for n = 0, 1 and 2 of the function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ when defined as follows at the heights indicated.
 - (a) $f(x_1, x_2, \dots, x_{n+1}) = x_{n+1}$ for all $(x_1, x_2, \dots, x_{n+1}) \in \mathbf{R}^{n+1}$; c = -1, 0, 1, 2.
 - (b) $f(x_1, x_2, \dots, x_{n+1}) = 0x_1^2 + x_2^2 + \dots + x_{n+1}^2$ for all $(x_1, x_2, \dots, x_{n+1}) \in \mathbf{R}^{n+1}$; c = 0, 1, 4.
 - (c) $f(x_1, x_2, \dots, x_{n+1}) = x_1 x_2^2 + \dots x_{n+1}^2$ for all $(x_1, x_2, \dots, x_{n+1}) \in \mathbf{R}^{n+1}$; c = -1, 0, 1, 2.
 - (d) $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 x_2^2 + \dots x_{n+1}^2$ for all $(x_1, x_2, \dots, x_{n+1}) \in \mathbf{R}^{n+1}$; c = -1, 0, 1.
- 6. (a) Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
 - (b) Give an example of a level set which is not the graph of a function. Explain why the example you give cannot be the graph of a function.