Fourier Analysis
Second Semester 2008/9
Solutions to Selected Homework Questions
These solutions are only sketches. Any gaps must be completed to produce the full solution.
#2, 2. For § € (0,7), we have defined f on [—m, 7] to be

|0, if 16| > o,

10) —{ 1 l6l/s, it |9] <.

(a) Graphs of functions should be of the correct shape and have the correct position, and

the axes should be labelled.
(b) In order to prove

(0 Z — cos( mS cos(nf).

we will first compute the Fourler series of f and observe it equals the right-hand side
of the above, and then we will prove that f is equal to its Fourier series.

Now,
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Therefore the Fourier series can formally be written as

+ Z — cos( n(5 cos(nf),

since f is an even function.

Observe that the Fourier series are not absolutely convergent, so we are not able to
conclude the Fourier series converges uniformly to f. However, f is continuous and
locally of bounded variation (for example, f = f; + fo where

0, if <-4,
fi@) =< 1+06/6, if —4d6 <0,
1, if 0<6

is non-decreasing and fs is non-increasing), so we can apply Jordan’s criterion to con-
clude that the Fourier series converges to f at every 6.
#2, 6. We compute

ot = 01 = | [ () = pone as

as k — oo.
#3, 1. Suppose A, = {all}, is a Cauchy sequence in [?(Z). Therefore, for each n € Z,
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as M, N — oo, so {aX}y is a Cauchy sequence in R. Therefore, by the completeness of R,
we can define a component-wise limit of Ay to be A = {a,}n, where a,, = limy_ anN
Now fix € > 0. There exists an number Ny such that, for N, M > Ny, we have
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Now, by Fatou’s lemma,
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for N > Ny. This proves both that A € [?(Z) and that limy_,., Ay = A in [*(Z).
#4, 4. Clearly f(0) = 1. Also, for & # 0,
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Computing the Fourier transform of g is similar.
#4, 6. We have

J&) = fE+n) = (1 =€) (&) =0
as h — 0, so f is continuous. Also, using the given formula (which is easy to prove using
the periodicity of e27#*¢ )

<5 [ 1@ - rta - /2001 ¢ — 0

as [£| — oc.

#5,5. (a) We have

(b) Using (a),
(A*A(f), ) = (Af, Af) = [|Af]]* > 0.
(¢) This one was harder than I thought, sorry. Define

Aif(z) = f'(z) + tof(z) and Ajf(z) = —f'(2) + taf(z).
and observe that we can prove (AfA;f, f) > 0 just as before. Now,

0< (AT A, f) / @) F@) + 22| @) — | ()] da
- /R (@) + 222 (@) 2 — )£ ()2 da

and so viewing the right-hand side as a polynomial in ¢, it can’t have more than one
real root, so we must have

(/R|f(a:)|2dx>24</R|f'(x)|2da:> (/rc'f(x)2d$> <o.

Rearranging this, using the normalisation condition and Plancherel’s Theorem gives the
uncertainty principle. The other direction is proved by reversing these steps.



