
Fourier Analysis
Second Semester 2008/9

Solutions to Selected Homework Questions
These solutions are only sketches. Any gaps must be completed to produce the full solution.

#2, 2. For δ ∈ (0, π), we have defined f on [−π, π] to be

f(θ) =
{

0, if |θ| > δ,
1− |θ|/δ, if |θ| ≤ δ.

(a) Graphs of functions should be of the correct shape and have the correct position, and
the axes should be labelled.

(b) In order to prove

f(θ) =
δ

2π
+ 2

∞∑
n=1

1− cos(nδ)
n2πδ

cos(nθ).

we will first compute the Fourier series of f and observe it equals the right-hand side
of the above, and then we will prove that f is equal to its Fourier series.
Now,

f̂(n) =
1
2π

∫ δ

δ

(1− |θ|/δ)einθ dθ,

so f̂(0) = δ/2π and for n 6= 0,

f̂(n) =
1
πδ

∫ δ

0

(1− θ)einθ dθ =
1

inπδ

∫ δ

0

einθ dθ +
[

1
inπ

(1− θ/δ)einθ

]δ

0

=
[
−1

n2πδ
einθ +

1
inπ

(1− θ/δ)einθ

]δ

0

=
1− einδ

n2πδ
+

i

nπ
.

Therefore the Fourier series can formally be written as

δ

2π
+ 2

∞∑
n=1

1− cos(nδ)
n2πδ

cos(nθ),

since f is an even function.
Observe that the Fourier series are not absolutely convergent, so we are not able to
conclude the Fourier series converges uniformly to f . However, f is continuous and
locally of bounded variation (for example, f = f1 + f2 where

f1(θ) =

 0, if θ < −δ,
1 + θ/δ, if − δθ ≤ 0,
1, if 0 < θ

is non-decreasing and f2 is non-increasing), so we can apply Jordan’s criterion to con-
clude that the Fourier series converges to f at every θ.

#2, 6. We compute

|f̂k(n)− f̂(n)| =
∣∣∣∣ 1
2π

∫ π

π

(fk(x)− f(x))einx dx

∣∣∣∣ ≤ 1
2π

∫ π

π

|fk(x)− f(x)| dx → 0

as k →∞.
#3, 1. Suppose An = {aN

n }n is a Cauchy sequence in l2(Z). Therefore, for each n ∈ Z,

|aN
n − aM

n | ≤

(∑
m∈Z

|aN
m − aM

m |2
) 1

2

→ 0

as M,N →∞, so {aN
n }N is a Cauchy sequence in R. Therefore, by the completeness of R,

we can define a component-wise limit of AN to be A = {an}n, where an = limN→∞ aN
n .

Now fix ε > 0. There exists an number N0 such that, for N,M > N0, we have(∑
m∈Z

|aN
m − aM

m |2
) 1

2

< ε.

Now, by Fatou’s lemma,(∑
n∈Z

|aN
n − an|2

) 1
2

≤ lim inf
M→∞

(∑
m∈Z

|aN
m − aM

m |2
) 1

2

< ε,

1



for N > N0. This proves both that A ∈ l2(Z) and that limN→∞AN = A in l2(Z).
#4, 4. Clearly f̂(0) = 1. Also, for ξ 6= 0,

f̂(ξ) =
∫ 1

−1

e2πixξ dx =
[
e2πixξ

2πiξ

]1
−1

=
e2πiξ

2πiξ
− e−2πiξ

2πiξ
=

sin(2πξ)
πξ

.

Computing the Fourier transform of g is similar.
#4, 6. We have

f̂(ξ)− f̂(ξ + h) = (1− e2πihξ)f̂(ξ) → 0

as h → 0, so f̂ is continuous. Also, using the given formula (which is easy to prove using
the periodicity of e2πixξ)

|f̂(ξ)| ≤ 1
2

∫
|f(x)− f(x− 1/(2ξ)| dξ → 0

as |ξ| → ∞.
#5, 5. (a) We have

(Af, g) =
∫
R

f ′(x)g(x) + xf(x)g(x) dx

=
∫
R

−f(x)g′(x) + f(x)xg(x) dx = (f,A∗g).

(b) Using (a),
(A∗A(f), f) = (Af,Af) = ‖Af‖2 ≥ 0.

(c) This one was harder than I thought, sorry. Define

Atf(x) = f ′(x) + txf(x) and A∗t f(x) = −f ′(x) + txf(x).

and observe that we can prove (A∗t Atf, f) ≥ 0 just as before. Now,

0 ≤ (A∗t Atf, f) =
∫
R

−f ′′(x)f(x) + x2|f(x)|2 − |f(x)|2 dx

=
∫
R

|f ′(x)|2 + t2x2|f(x)|2 − t|f(x)|2 dx

and so viewing the right-hand side as a polynomial in t, it can’t have more than one
real root, so we must have(∫

R

|f(x)|2 dx

)2

− 4
(∫

R

|f ′(x)|2 dx

)(∫
R

|f(x)|2 dx

)
≤ 0.

Rearranging this, using the normalisation condition and Plancherel’s Theorem gives the
uncertainty principle. The other direction is proved by reversing these steps.


