
Fourier Analysis
Second Semester 2009/10

Homework Assignment 4
(Due on 16th March 2010. Please staple multiple sheets together.)

Only the questions marked with an asterisk (*) will count towards the assessment for this course.
*1. In lectures we have proved the Heisenberg uncertainty principle, which says for ψ ∈ S(R)

such that ‖ψ‖L2(R) = 1 we have that(∫ ∞

−∞
x2|ψ(x)|2 dx

) (∫ ∞

−∞
ξ2|ψ̂(ξ)|2 dξ

)
≥ 1

16π2
.

Use this to prove that(∫ ∞

−∞
(x− x0)2|ψ(x)|2 dx

) (∫ ∞

−∞
(ξ − ξ0)2|ψ̂(ξ)|2 dξ

)
≥ 1

16π2

for each x0, ξ0 ∈ R.
2. Define the Landau kernels Ln : R → C by

Ln(x) =

{
(1−x2)n

cn
, if |x| ≤ 1,

0, if |x| > 1.

where cn is chosen so that
∫
R
Ln = 1.

(a) Prove that {Ln}n∈N is a family of good kernels as n→∞.
(b) Prove that, for a bounded uniformly continuous function f , the convolution (f∗Ln)(x) →

f(x) uniformly in x.
(c) Show that given a (uniformly) continuous function f : R → C which is zero outside

[−1/2, 1/2] and ε > 0, we can find a polynomial P such that |f(x) − P (x)| < ε for all
x ∈ [−1/2, 1/2].

3 Consider the initial value problem of finding u : R× [0,∞) → C such that{
∂tu(x, t)− ∂2

xu(x, t) = 0 for x ∈ R and t > 0,
u(x, 0) = f(x) for x ∈ R,

given data f ∈ S(R).
(a) Use the Fourier transform to derive a formula for a solution to be

u(x, t) = (Ht ∗ f)(x) (?)

where Ht is the heat kernel and is defined as

Ht(x) =
1

(4πt)
1
2
e−x2/(4t),

and ∗ denotes convolution in R.
(b) Show directly that the Heat kernel satisfies

∂tHt(x)− ∂2
xHt(x) = 0

for x ∈ R and t > 0.
(c) Show that {Ht}t>0 is a family of good kernels and so ‖u(·, t)− f‖L2(R) → 0 as t→ 0.
(d) Show that the function

v(x, t) =
x

t
Ht(x)

satisfies the heat equation for t > 0 and limt→0 v(x, t) = 0 for all x 6= 0, but v is not
continuous at the origin.

4. For f ∈ S(R), suppose f(x) is non-negative for all x ∈ R, positive for |x| ≤ 1 and zero
for |x| ≥ 2. Show that u(x, t) > 0 for all x ∈ R and t > 0, for u is given by formula (?).
(This means that the heat equation propagates heat at infinite speed: here our initial heat
distribution f was only non-zero in a neighbourhood of the origin, but for any positive t
that heat is felt everywhere on R.)

*5. For each t ∈ R, consider the operators At and A∗t defined on f ∈ S(R) by

Atf(x) = f ′(x) + txf(x) and A∗t f(x) = −f ′(x) + txf(x).

When t = 1 the operators At and A∗t are sometimes called the annihilation and creation
operators, respectively. Prove that for all f, g ∈ S(R) and

(f, g) =
∫
R

f(x)g(x) dx

we have
(a) (A∗t f, g) = (f,Atg),

1



(b) (A∗tAtf, g) ≥ 0,
(c) A∗tAt = Lt − tI, where Lt(f)(x) = −f ′′(x) + t2x2f(x) and I is the identity operator.

Use these facts to prove (Lt(f), f) ≥ t(f, f) for all f ∈ S(R) and use it to provide an
alternative proof of the Heisenberg uncertainty principle.

6. Suppose g : R × [0, 1] → C is such that g(·, t) ∈ M(R) and ∂2g(·, t) ∈ M(R) for each
t ∈ [0, 1] and there exists a function Φ ∈M(R) such that

|∂2g(x, t)− ∂2g(x, s)| ≤ |t− s|Φ(x)

for all s, t, x ∈ R. Here ∂2 denotes differentiation with respect to the second variable. Prove
that G(·) =

∫∞
−∞ g(x, ·)dx is a differentiable function and

G′(t) =
∫ ∞

−∞
∂2g(x, t)dx.


