Fourier Analysis Second Semester 2009/10 Homework Assignment 3 (Due on 23rd February 2010)

Only the questions marked with an asterisk (*) will count towards the assessment for this course.

Fourier Series.

- 1. Prove that $l^2(\mathbf{Z})$ is complete, that is, every Cauchy sequence in $l^2(\mathbf{Z})$ has a limit in $l^2(\mathbf{Z})$.
- *2. Consider the function $f: [-\pi, \pi] \to \mathbf{C}$ defined by $f(\theta) = |\theta|$. Use Parseval's Identity to prove

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^4} = \frac{\pi^4}{96} \text{ and } \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

- 3. In addition to what we discovered in question 2, it is, in fact, possible to calculate a formula for $\sum_{n} 1/n^{k}$ for every even k. However, nobody has yet managed to do this for odd k, even for k = 3. If you have some spare time, perhaps you might want to try to evaluate $\sum_{n} 1/n^{3}$. If you succeed you can publish your first paper.
- 4. Suppose that f is a continuously differentiable 2π -periodic function such that

$$\int_{-\pi}^{\pi} f(\theta) \, d\theta = 0.$$

(a) Use Parseval's Identity to show that

$$\int_{-\pi}^{\pi} |f(\theta)|^2 d\theta \le \int_{-\pi}^{\pi} |f'(\theta)|^2 d\theta.$$

(b) Find a function f_0 which satisfies the same conditions as f but

$$\int_{-\pi}^{\pi} |f_0(\theta)|^2 \, d\theta = \int_{-\pi}^{\pi} |f_0'(\theta)|^2 \, d\theta.$$

(c) Find a function f_1 which satisfies the same conditions as f but

$$\int_{-\pi}^{\pi} |f_1(\theta)|^2 \, d\theta < \int_{-\pi}^{\pi} |f_1'(\theta)|^2 \, d\theta.$$

(d) Suppose g is continuously differentiable and f is as above. Prove that

$$\left|\int_{-\pi}^{\pi} \overline{f(\theta)}g(\theta) \, d\theta\right|^2 \leq \int_{-\pi}^{\pi} |f(\theta)|^2 \, d\theta \int_{-\pi}^{\pi} |g'(\theta)|^2 \, d\theta.$$

(e) Suppose h is continuously differentiable on $[0, \pi]$ and $h(0) = h(\pi) = 0$. Prove

$$\int_0^\pi |h(\theta)|^2 \, d\theta \le \int_0^\pi |h'(\theta)|^2 \, d\theta.$$

5. Suppose f is 2π -periodic function which is k-times continuously differentiable. Prove that

$$\hat{f}(n) = O(1/|n|^k)$$

as $|n| \to \infty$.

6. Suppose f is 2π -periodic and integrable on $[-\pi, \pi]$.

(a) Show that

$$\hat{f}(n) = \frac{1}{4\pi} \int_{-\pi}^{\pi} [f(x) - f(x + \pi/n)] e^{-inx} \, dx.$$

(b) Assume that f is Hölder continuous of order α , that is

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

for some C > 0 and all x and y. Use part (a) to prove

$$\hat{f}(n) = O(1/|n|^{\alpha}).$$

1

The Fourier transform.

7. Prove the following proposition, which we stated in class.

Proposition. If $f \in S(\mathbf{R})$ then (i) $f(x+h) \to \hat{f}(\xi)e^{2\pi i h\xi}$ whenever $h \in \mathbf{R}$, (ii) $f(x)e^{-2\pi i x h} \to \hat{f}(\xi+h)$ whenever $h \in \mathbf{R}$, (iii) $f(\delta x) \to \delta^{-1}\hat{f}(\delta^{-1}\xi)$ for $\delta > 0$, (iv) $f'(x) \to 2\pi i \xi \hat{f}(\xi)$, (v) $-2\pi i x f(x) \to (\hat{f})'(\xi)$.

8. The aim of this question is to prove that $g \colon \mathbf{R} \to \mathbf{C}$ defined by

 $g(x) = e^{-\pi x^2}$

for all $x \in \mathbf{R}$ is equal to its own Fourier transform.

- (a) By a simple calculation, check that $g'(x) = -2\pi x g(x)$.
- (b) Set

$$G(\xi) = \widehat{g}(\xi) = \int_{-\infty}^{\infty} g(x)e^{-2\pi i x\xi} dx$$

and use the above fact to prove that $G'(\xi) = -2\pi\xi G(\xi)$.

- (c) Define $H(\xi) = G(\xi)e^{\pi\xi^2}$ and show that $H'(\xi) = 0$ for all $\xi \in \mathbf{R}$.
- (d) Conclude that $G(\xi) = e^{-\pi\xi^2}$. You may assume G(0) = 1 without proof.
- 9. Let f and g be functions defined by

$$f(x) = \begin{cases} 1, & \text{if } |x| \le 1, \\ 0, & \text{if } |x| > 1, \end{cases}$$

and

$$g(x) = \begin{cases} 1 - |x|, & \text{if } |x| \le 1, \\ 0, & \text{if } |x| > 1. \end{cases}$$

Although f is not continuous, observe the integral defining the Fourier transform of f still makes sense. Show that

$$\widehat{f}(\xi) = \frac{\sin(2\pi\xi)}{\pi\xi}$$
 and $\widehat{g}(x) = \left(\frac{\sin(2\pi\xi)}{\pi\xi}\right)^2$,

for $\xi \neq 0$ and compute $\widehat{f}(0)$ and $\widehat{g}(0)$.

*10. Let f be a function of moderate decrease. This question illustrates the principle that decay in the Fourier transform \hat{f} is related to the continuity of the function f. Suppose that \hat{f} is continuous and satisfies

$$|\widehat{f}(\xi)| \le \frac{C}{|\xi|^{1+\alpha}}$$

for some C > 0 and $0 < \alpha < 1$.

- (a) Derive an expression for f(x+h) f(x) using the inversion formula for the Fourier transform. This expression should be an integral of some kind.
- (b) Split the integral in two, integrating over $|\xi| \le 1/|h|$ and $|\xi| > 1/|h|$. Estimate each integral separately to conclude

$$|f(x+h) - f(x)| \le A|h|^{\alpha}$$

for some A > 0.

11. Suppose f is a function of moderate decrease (hence, also continuous).

(a) Prove that \widehat{f} is continuous and that $\widehat{f}(\xi) \to 0$ as $|\xi| \to \infty$ by proving the formula

$$\widehat{f}(\xi) = \frac{1}{2} \int [f(x) - f(x - 1/(2\xi))] e^{-2\pi i x\xi} d\xi$$

(b) Show that if $\hat{f}(\xi) = 0$ for all $\xi \in \mathbf{R}$, then f(x) = 0 for all $x \in \mathbf{R}$. [Hint: Check the multiplication formula $\int \hat{f}(y)g(y) \, dy = \int f(y)\hat{g}(y) \, dy$ is valid for such f when $g \in \mathcal{S}(\mathbf{R})$.]