
Fourier Analysis
Second Semester 2009/10

Homework Assignment 1
(Due on 26th January 2009)

Questions marked with an asterisk will form part of the assessment for this course.

1. For z ∈ C, we define the complex exponential by

ez =
∞∑

n=0

zn

n!

(a) Show that the above definition makes sense by showing that the series converges for
every complex number z.

(b) If z1 and z2 are two complex numbers, prove that ez1ez2 = ez1+z2 . [Hint: You may like
to use the binomial theorem.]

(c) Show that
eiy = cos y + i sin y

whenever y ∈ R. This is called Euler’s identity. [Hint: Take sine and cosine to also be
defined via their power series.]

(d) More generally, prove that

ez = ex(cos y + i sin y),

where z = x + iy and x, y ∈ R.
2. Verify that the function x 7→ einx is periodic with period 2π and that

1
2π

∫ π

−π

einx dx =
{

1, if n = 0,
0, if n 6= 0.

Use this fact to prove that if n, m ≥ 1 we have

1
π

∫ π

−π

cos nx cos mxdx =
{

1, if n = m,
0, if n 6= m.

and similarly
1
π

∫ π

−π

sinnx sinmxdx =
{

1, if n = m,
0, if n 6= m.

Finally, show that
1
π

∫ π

−π

cos nx sinmxdx = 0

for any n and m. [Hint: Calculate einxe−imx + einxeimx and einxe−imx − einxeimx.]
*3. In lectures we arrived at the differential equation

y′′(t) + c2y(t) = 0 (†)

as a model for the displacement y(t) of a mass attached to a spring as time t passes.
(a) Show that the function

y(t) = a cos(ct) + b sin(ct) (‡)

solves (†), where a, b ∈ C.
(b) Show that any solution y of (†) which is twice continuously differentiable is of the form

(‡). [Hint: Start by differentiating the two functions g(t) = y(t) cos(ct)−c−1y′(t) sin(ct)
and h(t) = y(t) sin(ct) + c−1y′(t) cos(ct).]

4. Suppose F is a function on (a, b) with two continuous derivatives. Show that whenever x
and x + h belong to (a, b), one may write

F (x + h) = F (x) + hF ′(x) +
h2

2
F ′′(x) + h2ϕx(h)

where ϕx(h) → 0 as h → 0 for each x. Deduce that, for each x,

F (x + h) + F (x− h)− 2F (x)
h2

→ F ′′(x)

as h → 0.
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*5. In lectures we have defined the Fourier sine cofficients of a function f as

An =
2
π

∫ π

0

f(x) sin(nx) dx

for n = 1, 2, 3, . . . . Show that

An =
2h

n2

sin(np)
p(π − p)

when f : [0, π] → C is defined as

f(x) =

{
xh
p , if 0 ≤ x ≤ p,

h(π−x)
π−p if p ≤ x ≤ π.

Observe, this function f may be interpreted as the initial position of a plucked string, and
so is a relevant example given our physical motivation.

*6. This excercise will show how the symmetries of a function imply certain properties of Fourier
coefficients. Let f be a 2π-periodic integrable function defined on R.
(a) Show that the Fourier series of f can be written as

f̂(0) +
∞∑

n=1

(f̂(n) + f̂(−n)) cos(nx) + i(f̂(n)− f̂(−n)) sin(nx).

(b) Prove that if f is even, then f̂(n) = f̂(−n), and so the Fourier series is a cosine series.
(c) Prove that if f is odd, then f̂(n) = −f̂(−n), and so the Fourier series is a sine series.
(d) Suppose that f(x + π) = f(x) for all x ∈ R. Show that f̂(n) = 0 for all odd n.
(e) Show that if f is real-valued then f̂(n) = f̂(−n).

*7. Recall that the Dirichlet kernel is

DN (x) =
N∑

n=−N

einx.

(a) Prove that

DN (x) =
sin((N + 1

2 )x)
sin(x/2)

.

(b) Show that DN is an even function and that
1
2π

∫ π

−π

DN (x) dx = 1.

These exercises are taken from Stein and Shakarchi.


