Mathematical Methods for Social Scientists
Math 195 (Sec 55), Autumn 2006
Solutions for the Revision Sheet for Mid-term 2

(a) A function f:R* — R is continuous at (z,y) if

lim f(u,v) = f(@,y)

(w,v)=(zy

(b) One example is
[ S, if (x,y) #(0,0);
flz,y) = { 07+y if (z,y) = (0,0).

One can easily check that f(xz,0) =0 for all x € R and f(0,y) = 0 for all y € R,

however
lim x, 0,0) =0,
(x’y)ﬁ(o’o)f( y) # £(0,0)
since
lirr(l)f(:v,:v) =1/2.
(c) We have
2,2 2.2 2 2y, 2
6Z‘y _ 6xy §6<I +y>y :6y2§6(3:2—|—y2).
x2+y2 $2+y2 $2+y2

For each ¢ > 0, set 0 = 1/¢/6. So we have that if 0 < \/(x —02+(y—02<$

then
61’2y2
x? 492

— o‘ < 6(2* +y*) < 60° =6(,/¢/6)* =¢.

Therefore, by definition, lim, ,)—(0,0) % =0

(a) For f:R? — R the partial derivative of f with respect to z is

a h7 - )
O (1 )=t 12 1ot) = o)

and the partial derivative of f with respect to y is

f(x,y+h)—f(x,y)
h

(b) Clairaut’s Theorem. If f:R? — R is such that 9*f/0xdy and 0*f/0yOx are
continuous in on a disc containing a point (z,y), then
0*f 0*f




4.

(c) You should find that f,, = 3(1 + x)y?*e” = fyu.
(d) Setting u(x,t) = f(x — ct) we can apply the chain rule to find

Uy (2, 1) = f"(x — ct)

and
uy(z,t) = Af"(x — ct).

Thus
uy(z,t) = Af" (1 — ct) = Puge(z, 1)

and so u satisfies the wave equation. The answer is similar for f(x + ct).
z— 2 = fa(o,y0)(x — o) + fiy(0,Y0)(y — o)

z2—8=4(x —2)+8(y—1)

(¢) Note: Point should have been (7, e, 7).
Z—’/T:(.??—ﬂ'>+g(y—€)
(a) If (z,y) — f(x,y) is a differentiable function of x and y, and (s,t) — g¢(s,t) and
(s,t) — h(s,t) are differentiable functions of s and ¢, then (s, t) — f(g(s,t), h(s,t))
is a differentiable function of s and . We also have

0 ) ) ) oh
oL (5.0) = 006005, D) 525, 1) + G o500 ) 5 5.0
and
o (sut) = 5 a0, 0) 27 (5.0) + S g5, . 0) G (5.0,
(b) We have
3f — (Y Y Qi 342
g(s,t) = (e’ cosz)(2st) + (e¥sinx)(4s°t" + t)
— (5 cos(s2t + 7)) (2st) + (5T sin(s% + 7)) (45712 + 1)
and
(;‘;C(s, t) = (e¥ cos w)(s® + 3t?) + (e’ sinx) (25t + s)

= (e cos(s2t + £9)) (52 + 3t%) + (e T sin(s%t + 7)) (25M + 5).



d.

(a)

(b) D
()
()
(e)

C

(a)

For a unit vector u = (a, b), we define

Du()a.y) = lim LTV D) = T0)

and the gradient vector is

Vf=1(0:1,0,f)
u(f)=Vf-u

The directional derivative attains its maximum when u =V f/|V f]|.
The vector V f and the normal to the tangent plane of a level set of f are parallel.

For f(x,y) = xsin(x—y), we have V f(z,y) = (sin(zx—y)+x cos(x—y), —z cos(x —

Y))-

The function f: R? — R has a local maximum at (a, b) if there exists a § > 0 such
that f(x,y) < f(aa b) for all (:E?y) S B5(aab) = {(fL‘,y)l(:L’ - CL) ( - b) < 52}
The function f: R? — R has a local minimum at (a,b) if there exists a § > 0 such
that f(z,y) > f(a,b) for all (z,y) € Bs(a,b).

Suppose all the second-order derivatives of f are continuous on a disc with centre
(a,b) and suppose that 0, f(a,b) =0 = 0,f(a,b). Let

D(a,b) = 0y f(a, )0y, f(a,b) — (Ouy f(a, b))%

Then (a) if D(a,b) > 0 and Oy, f(a,b) > 0 then f(a,b) is a local minimum value
of f, (b) if D(a,b) > 0 and 0, f(a,b) < 0 then f(a,b) is a local maximum value
of f, and (c) if D(a,b) < 0, then f(a,b) is neither a local minimum nor a local
maximum of f.

The critical points of the function f(z,y) = 4 + 23 + y3 — 3xy satisfy

322 -3y = 0
392’ —3x = 0

so they are (0,0) and (1,1). We find D(z,y) = 36zy —9. Thus, D(0,0) = -9 <0
and so (0,0) is a saddle point, and D(1,1) =36 —9 > 0 and 0., f(1,1) =6 >0

so (1,1) is a local minimum point.

The extreme values of a function f: R? — R subject to the constraint g(z,y) = k
occur at the points (z,y) which satisfy

{Vf(fc,y) = AVy(z,y)
g(z,y) = k

for some A € R. Evaluating f at the points which satisfy this system of equations
and taking the largest (smallest) produces the maximum (minimum) of f subject
to the constraint g(z,y) = k.



(b) We must solve
(2zy,2%) = (\27,4y)
> +297 = 6

We find the solutions (z,y) are (0,4+/3) and (2, £1), so

max %y =4
724-2y2=6

and

min 2%y = —4.
224-2y2=6



